1,438 research outputs found

    Breaking Instance-Independent Symmetries In Exact Graph Coloring

    Full text link
    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing. An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature

    On the neighbour sum distinguishing index of planar graphs

    Full text link
    Let cc be a proper edge colouring of a graph G=(V,E)G=(V,E) with integers 1,2,…,k1,2,\ldots,k. Then k≥Δ(G)k\geq \Delta(G), while by Vizing's theorem, no more than k=Δ(G)+1k=\Delta(G)+1 is necessary for constructing such cc. On the course of investigating irregularities in graphs, it has been moreover conjectured that only slightly larger kk, i.e., k=Δ(G)+2k=\Delta(G)+2 enables enforcing additional strong feature of cc, namely that it attributes distinct sums of incident colours to adjacent vertices in GG if only this graph has no isolated edges and is not isomorphic to C5C_5. We prove the conjecture is valid for planar graphs of sufficiently large maximum degree. In fact even stronger statement holds, as the necessary number of colours stemming from the result of Vizing is proved to be sufficient for this family of graphs. Specifically, our main result states that every planar graph GG of maximum degree at least 2828 which contains no isolated edges admits a proper edge colouring c:E→{1,2,…,Δ(G)+1}c:E\to\{1,2,\ldots,\Delta(G)+1\} such that ∑e∋uc(e)≠∑e∋vc(e)\sum_{e\ni u}c(e)\neq \sum_{e\ni v}c(e) for every edge uvuv of GG.Comment: 22 page

    Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors

    Get PDF
    Two graphs GG and HH are homomorphism indistinguishable over a class of graphs F\mathcal{F} if for all graphs F∈FF \in \mathcal{F} the number of homomorphisms from FF to GG is equal to the number of homomorphisms from FF to HH. Many natural equivalence relations comparing graphs such as (quantum) isomorphism, spectral, and logical equivalences can be characterised as homomorphism indistinguishability relations over certain graph classes. Abstracting from the wealth of such instances, we show in this paper that equivalences w.r.t. any self-complementarity logic admitting a characterisation as homomorphism indistinguishability relation can be characterised by homomorphism indistinguishability over a minor-closed graph class. Self-complementarity is a mild property satisfied by most well-studied logics. This result follows from a correspondence between closure properties of a graph class and preservation properties of its homomorphism indistinguishability relation. Furthermore, we classify all graph classes which are in a sense finite (essentially profinite) and satisfy the maximality condition of being homomorphism distinguishing closed, i.e. adding any graph to the class strictly refines its homomorphism indistinguishability relation. Thereby, we answer various question raised by Roberson (2022) on general properties of the homomorphism distinguishing closure.Comment: 26 pages, 1 figure, 1 tabl
    • …
    corecore