46,798 research outputs found

    Graph Neural Networks with Generated Parameters for Relation Extraction

    Full text link
    Recently, progress has been made towards improving relational reasoning in machine learning field. Among existing models, graph neural networks (GNNs) is one of the most effective approaches for multi-hop relational reasoning. In fact, multi-hop relational reasoning is indispensable in many natural language processing tasks such as relation extraction. In this paper, we propose to generate the parameters of graph neural networks (GP-GNNs) according to natural language sentences, which enables GNNs to process relational reasoning on unstructured text inputs. We verify GP-GNNs in relation extraction from text. Experimental results on a human-annotated dataset and two distantly supervised datasets show that our model achieves significant improvements compared to baselines. We also perform a qualitative analysis to demonstrate that our model could discover more accurate relations by multi-hop relational reasoning

    DivGraphPointer: A Graph Pointer Network for Extracting Diverse Keyphrases

    Full text link
    Keyphrase extraction from documents is useful to a variety of applications such as information retrieval and document summarization. This paper presents an end-to-end method called DivGraphPointer for extracting a set of diversified keyphrases from a document. DivGraphPointer combines the advantages of traditional graph-based ranking methods and recent neural network-based approaches. Specifically, given a document, a word graph is constructed from the document based on word proximity and is encoded with graph convolutional networks, which effectively capture document-level word salience by modeling long-range dependency between words in the document and aggregating multiple appearances of identical words into one node. Furthermore, we propose a diversified point network to generate a set of diverse keyphrases out of the word graph in the decoding process. Experimental results on five benchmark data sets show that our proposed method significantly outperforms the existing state-of-the-art approaches.Comment: Accepted to SIGIR 201

    Open-World Knowledge Graph Completion

    Full text link
    Knowledge Graphs (KGs) have been applied to many tasks including Web search, link prediction, recommendation, natural language processing, and entity linking. However, most KGs are far from complete and are growing at a rapid pace. To address these problems, Knowledge Graph Completion (KGC) has been proposed to improve KGs by filling in its missing connections. Unlike existing methods which hold a closed-world assumption, i.e., where KGs are fixed and new entities cannot be easily added, in the present work we relax this assumption and propose a new open-world KGC task. As a first attempt to solve this task we introduce an open-world KGC model called ConMask. This model learns embeddings of the entity's name and parts of its text-description to connect unseen entities to the KG. To mitigate the presence of noisy text descriptions, ConMask uses a relationship-dependent content masking to extract relevant snippets and then trains a fully convolutional neural network to fuse the extracted snippets with entities in the KG. Experiments on large data sets, both old and new, show that ConMask performs well in the open-world KGC task and even outperforms existing KGC models on the standard closed-world KGC task.Comment: 8 pages, accepted to AAAI 201

    Interpreting Embedding Models of Knowledge Bases: A Pedagogical Approach

    Full text link
    Knowledge bases are employed in a variety of applications from natural language processing to semantic web search; alas, in practice their usefulness is hurt by their incompleteness. Embedding models attain state-of-the-art accuracy in knowledge base completion, but their predictions are notoriously hard to interpret. In this paper, we adapt "pedagogical approaches" (from the literature on neural networks) so as to interpret embedding models by extracting weighted Horn rules from them. We show how pedagogical approaches have to be adapted to take upon the large-scale relational aspects of knowledge bases and show experimentally their strengths and weaknesses.Comment: presented at 2018 ICML Workshop on Human Interpretability in Machine Learning (WHI 2018), Stockholm, Swede
    corecore