2,653 research outputs found

    Self-weighted Multiview Clustering with Multiple Graphs

    Full text link
    <p> In multiview learning, it is essential to assign a reasonable weight to each view according to the view importance. Thus, for multiview clustering task, a wise and elegant method should achieve clustering multiview data while learning the view weights. In this paper, we propose to explore a Laplacian rank constrained graph, which can be approximately as the centroid of the built graph for each view with different confidences. We start our work with a natural thought that the weights can be learned by introducing a hyperparameter. By analyzing the weakness of this way, we further propose a new multiview clustering method which is totally selfweighted. More importantly, once the target graph is obtained in our models, we can directly assign the cluster label to each data point and do not need any postprocessing such as K-means in standard spectral clustering. Evaluations on two synthetic datasets indicate the effectiveness of our methods. Compared with several representative graphbased multiview clustering approaches on four realworld datasets, the proposed methods achieve the better performances and our new clustering method is more practical to use.</p

    Consensus graph and spectral representation for one-step multi-view kernel based clustering

    Get PDF
    Recently, multi-view clustering has received much attention in the fields of machine learning and pattern recognition. Spectral clustering for single and multiple views has been the common solution. Despite its good clustering performance, it has a major limitation: it requires an extra step of clustering. This extra step, which could be the famous k-means clustering, depends heavily on initialization, which may affect the quality of the clustering result. To overcome this problem, a new method called Multiview Clustering via Consensus Graph Learning and Nonnegative Embedding (MVCGE) is presented in this paper. In the proposed approach, the consensus affinity matrix (graph matrix), consensus representation and cluster index matrix (nonnegative embedding) are learned simultaneously in a unified framework. Our proposed method takes as input the different kernel matrices corresponding to the different views. The proposed learning model integrates two interesting constraints: (i) the cluster indices should be as smooth as possible over the consensus graph and (ii) the cluster indices are set to be as close as possible to the graph convolution of the consensus representation. In this approach, no post-processing such as k-means or spectral rotation is required. Our approach is tested with real and synthetic datasets. The experiments performed show that the proposed method performs well compared to many state-of-the-art approaches
    corecore