73,774 research outputs found

    An expectation-maximization algorithm for probabilistic reconstructions of full-length isoforms from splice graphs.

    Get PDF
    Reconstructing full-length transcript isoforms from sequence fragments (such as ESTs) is a major interest and challenge for bioinformatic analysis of pre-mRNA alternative splicing. This problem has been formulated as finding traversals across the splice graph, which is a directed acyclic graph (DAG) representation of gene structure and alternative splicing. In this manuscript we introduce a probabilistic formulation of the isoform reconstruction problem, and provide an expectation-maximization (EM) algorithm for its maximum likelihood solution. Using a series of simulated data and expressed sequences from real human genes, we demonstrate that our EM algorithm can correctly handle various situations of fragmentation and coupling in the input data. Our work establishes a general probabilistic framework for splice graph-based reconstructions of full-length isoforms

    Defragmenting the Module Layout of a Partially Reconfigurable Device

    Full text link
    Modern generations of field-programmable gate arrays (FPGAs) allow for partial reconfiguration. In an online context, where the sequence of modules to be loaded on the FPGA is unknown beforehand, repeated insertion and deletion of modules leads to progressive fragmentation of the available space, making defragmentation an important issue. We address this problem by propose an online and an offline component for the defragmentation of the available space. We consider defragmenting the module layout on a reconfigurable device. This corresponds to solving a two-dimensional strip packing problem. Problems of this type are NP-hard in the strong sense, and previous algorithmic results are rather limited. Based on a graph-theoretic characterization of feasible packings, we develop a method that can solve two-dimensional defragmentation instances of practical size to optimality. Our approach is validated for a set of benchmark instances.Comment: 10 pages, 11 figures, 1 table, Latex, to appear in "Engineering of Reconfigurable Systems and Algorithms" as a "Distinguished Paper

    Data fragmentation for parallel transitive closure strategies

    Get PDF
    Addresses the problem of fragmenting a relation to make the parallel computation of the transitive closure efficient, based on the disconnection set approach. To better understand this design problem, the authors focus on transportation networks. These are characterized by loosely interconnected clusters of nodes with a high internal connectivity rate. Three requirements that have to be fulfilled by a fragmentation are formulated, and three different fragmentation strategies are presented, each emphasizing one of these requirements. Some test results are presented to show the performance of the various fragmentation strategie

    A survey of parallel execution strategies for transitive closure and logic programs

    Get PDF
    An important feature of database technology of the nineties is the use of parallelism for speeding up the execution of complex queries. This technology is being tested in several experimental database architectures and a few commercial systems for conventional select-project-join queries. In particular, hash-based fragmentation is used to distribute data to disks under the control of different processors in order to perform selections and joins in parallel. With the development of new query languages, and in particular with the definition of transitive closure queries and of more general logic programming queries, the new dimension of recursion has been added to query processing. Recursive queries are complex; at the same time, their regular structure is particularly suited for parallel execution, and parallelism may give a high efficiency gain. We survey the approaches to parallel execution of recursive queries that have been presented in the recent literature. We observe that research on parallel execution of recursive queries is separated into two distinct subareas, one focused on the transitive closure of Relational Algebra expressions, the other one focused on optimization of more general Datalog queries. Though the subareas seem radically different because of the approach and formalism used, they have many common features. This is not surprising, because most typical Datalog queries can be solved by means of the transitive closure of simple algebraic expressions. We first analyze the relationship between the transitive closure of expressions in Relational Algebra and Datalog programs. We then review sequential methods for evaluating transitive closure, distinguishing iterative and direct methods. We address the parallelization of these methods, by discussing various forms of parallelization. Data fragmentation plays an important role in obtaining parallel execution; we describe hash-based and semantic fragmentation. Finally, we consider Datalog queries, and present general methods for parallel rule execution; we recognize the similarities between these methods and the methods reviewed previously, when the former are applied to linear Datalog queries. We also provide a quantitative analysis that shows the impact of the initial data distribution on the performance of methods
    corecore