613 research outputs found

    Directed cycle double covers: structure and generation of hexagon graphs

    Full text link
    Jaeger's directed cycle double cover conjecture can be formulated as a problem of existence of special perfect matchings in a class of graphs that we call hexagon graphs. In this work, we explore the structure of hexagon graphs. We show that hexagon graphs are braces that can be generated from the ladder on 8 vertices using two types of McCuaig's augmentations.Comment: 20 page

    Subdivisional spaces and graph braid groups

    Get PDF
    We study the problem of computing the homology of the configuration spaces of a finite cell complex XX. We proceed by viewing XX, together with its subdivisions, as a subdivisional space--a kind of diagram object in a category of cell complexes. After developing a version of Morse theory for subdivisional spaces, we decompose XX and show that the homology of the configuration spaces of XX is computed by the derived tensor product of the Morse complexes of the pieces of the decomposition, an analogue of the monoidal excision property of factorization homology. Applying this theory to the configuration spaces of a graph, we recover a cellular chain model due to \'{S}wi\k{a}tkowski. Our method of deriving this model enhances it with various convenient functorialities, exact sequences, and module structures, which we exploit in numerous computations, old and new.Comment: 71 pages, 15 figures. Typo fixed. May differ slightly from version published in Documenta Mathematic

    Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity

    Full text link
    We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n^{7/6}). No known input causes our algorithm to use area \Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing, Bordeaux, 201
    • …
    corecore