592,860 research outputs found

    Brokered Graph State Quantum Computing

    Full text link
    We describe a procedure for graph state quantum computing that is tailored to fully exploit the physics of optically active multi-level systems. Leveraging ideas from the literature on distributed computation together with the recent work on probabilistic cluster state synthesis, our model assigns to each physical system two logical qubits: the broker and the client. Groups of brokers negotiate new graph state fragments via a probabilistic optical protocol. Completed fragments are mapped from broker to clients via a simple state transition and measurement. The clients, whose role is to store the nascent graph state long term, remain entirely insulated from failures during the brokerage. We describe an implementation in terms of NV-centres in diamond, where brokers and clients are very naturally embodied as electron and nuclear spins.Comment: 5 pages, 3 figure

    Computing graph gonality is hard

    Get PDF
    There are several notions of gonality for graphs. The divisorial gonality dgon(G) of a graph G is the smallest degree of a divisor of positive rank in the sense of Baker-Norine. The stable gonality sgon(G) of a graph G is the minimum degree of a finite harmonic morphism from a refinement of G to a tree, as defined by Cornelissen, Kato and Kool. We show that computing dgon(G) and sgon(G) are NP-hard by a reduction from the maximum independent set problem and the vertex cover problem, respectively. Both constructions show that computing gonality is moreover APX-hard.Comment: The previous version only dealt with hardness of the divisorial gonality. The current version also shows hardness of stable gonality and discusses the relation between the two graph parameter

    Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking

    Get PDF
    Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing a canonical form for a graph is computationally expensive. Whether computing a canonical representation for states and reducing the state space is more efficient than using canonical hashcodes for states and comparing states one-to-one is not a priori clear. In this paper these approaches to isomorphism reduction are described and a preliminary comparison is presented for checking isomorphism of pairs of graphs. An existing algorithm that does not compute a canonical form performs better that tools that do for graphs that are used in graph-based model checking. Computing canonical forms seems to scale better for larger graphs
    corecore