9 research outputs found

    Skeleton-based Action Recognition of People Handling Objects

    Full text link
    In visual surveillance systems, it is necessary to recognize the behavior of people handling objects such as a phone, a cup, or a plastic bag. In this paper, to address this problem, we propose a new framework for recognizing object-related human actions by graph convolutional networks using human and object poses. In this framework, we construct skeletal graphs of reliable human poses by selectively sampling the informative frames in a video, which include human joints with high confidence scores obtained in pose estimation. The skeletal graphs generated from the sampled frames represent human poses related to the object position in both the spatial and temporal domains, and these graphs are used as inputs to the graph convolutional networks. Through experiments over an open benchmark and our own data sets, we verify the validity of our framework in that our method outperforms the state-of-the-art method for skeleton-based action recognition.Comment: Accepted in WACV 201

    Spatio-Temporal Graph Convolution for Skeleton Based Action Recognition

    Full text link
    Variations of human body skeletons may be considered as dynamic graphs, which are generic data representation for numerous real-world applications. In this paper, we propose a spatio-temporal graph convolution (STGC) approach for assembling the successes of local convolutional filtering and sequence learning ability of autoregressive moving average. To encode dynamic graphs, the constructed multi-scale local graph convolution filters, consisting of matrices of local receptive fields and signal mappings, are recursively performed on structured graph data of temporal and spatial domain. The proposed model is generic and principled as it can be generalized into other dynamic models. We theoretically prove the stability of STGC and provide an upper-bound of the signal transformation to be learnt. Further, the proposed recursive model can be stacked into a multi-layer architecture. To evaluate our model, we conduct extensive experiments on four benchmark skeleton-based action datasets, including the large-scale challenging NTU RGB+D. The experimental results demonstrate the effectiveness of our proposed model and the improvement over the state-of-the-art.Comment: Accepted by AAAI 201

    EleAtt-RNN: Adding Attentiveness to Neurons in Recurrent Neural Networks

    Full text link
    Recurrent neural networks (RNNs) are capable of modeling temporal dependencies of complex sequential data. In general, current available structures of RNNs tend to concentrate on controlling the contributions of current and previous information. However, the exploration of different importance levels of different elements within an input vector is always ignored. We propose a simple yet effective Element-wise-Attention Gate (EleAttG), which can be easily added to an RNN block (e.g. all RNN neurons in an RNN layer), to empower the RNN neurons to have attentiveness capability. For an RNN block, an EleAttG is used for adaptively modulating the input by assigning different levels of importance, i.e., attention, to each element/dimension of the input. We refer to an RNN block equipped with an EleAttG as an EleAtt-RNN block. Instead of modulating the input as a whole, the EleAttG modulates the input at fine granularity, i.e., element-wise, and the modulation is content adaptive. The proposed EleAttG, as an additional fundamental unit, is general and can be applied to any RNN structures, e.g., standard RNN, Long Short-Term Memory (LSTM), or Gated Recurrent Unit (GRU). We demonstrate the effectiveness of the proposed EleAtt-RNN by applying it to different tasks including the action recognition, from both skeleton-based data and RGB videos, gesture recognition, and sequential MNIST classification. Experiments show that adding attentiveness through EleAttGs to RNN blocks significantly improves the power of RNNs.Comment: IEEE Transactions on Image Processing (Accept). arXiv admin note: substantial text overlap with arXiv:1807.0444
    corecore