194 research outputs found

    Reasoning about Knowledge in Linear Logic: Modalities and Complexity

    No full text
    In a recent paper, Jean-Yves Girard commented that ”it has been a long time since philosophy has stopped intereacting with logic”[17]. Actually, it has no

    Semantics for first-order affine inductive data types via slice categories

    Full text link
    Affine type systems are substructural type systems where copying of information is restricted, but discarding of information is permissible at all types. Such type systems are well-suited for describing quantum programming languages, because copying of quantum information violates the laws of quantum mechanics. In this paper, we consider a first-order affine type system with inductive data types and present a novel categorical semantics for it. The most challenging aspect of this interpretation comes from the requirement to construct appropriate discarding maps for our data types which might be defined by mutual/nested recursion. We show how to achieve this for all types by taking models of a first-order linear type system whose atomic types are discardable and then presenting an additional affine interpretation of types within the slice category of the model with the tensor unit. We present some concrete categorical models for the language ranging from classical to quantum. Finally, we discuss potential ways of dualising and extending our methods and using them for interpreting coalgebraic and lazy data types

    Focused Proof-search in the Logic of Bunched Implications

    Get PDF
    The logic of Bunched Implications (BI) freely combines additive and multiplicative connectives, including implications; however, despite its well-studied proof theory, proof-search in BI has always been a difficult problem. The focusing principle is a restriction of the proof-search space that can capture various goal-directed proof-search procedures. In this paper, we show that focused proof-search is complete for BI by first reformulating the traditional bunched sequent calculus using the simpler data-structure of nested sequents, following with a polarised and focused variant that we show is sound and complete via a cut-elimination argument. This establishes an operational semantics for focused proof-search in the logic of Bunched Implications.Comment: 18 pages conten

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    A linear algebra approach to linear metatheory

    Get PDF
    Linear typed λ-calculi are more delicate than their simply typed siblings when it comes to metatheoretic results like preservation of typing under renaming and substitution. Tracking the usage of variables in contexts places more constraints on how variables may be renamed or substituted. We present a methodology based on linear algebra over semirings, extending McBride's kits and traversals approach for the metatheory of syntax with binding to linear usage-annotated terms. Our approach is readily formalisable, and we have done so in Agda

    Semi-Axiomatic Sequent Calculus

    Get PDF
    • 

    corecore