2,564 research outputs found

    Investigating Continual Learning Strategies in Neural Networks

    Get PDF
    This paper explores the role of continual learning strategies when neural networks are confronted with learning tasks sequentially. We analyze the stability-plasticity dilemma with three factors in mind: the type of network architecture used, the continual learning scenario defined and the continual learning strategy implemented. Our results show that complementary learning systems and neural volume significantly contribute towards memory retrieval and consolidation in neural networks. Finally, we demonstrate how regularization strategies such as elastic weight consolidation are more well-suited for larger neural networks whereas rehearsal strategies such as gradient episodic memory are better suited for smaller neural networks

    Using Hindsight to Anchor Past Knowledge in Continual Learning

    Full text link
    In continual learning, the learner faces a stream of data whose distribution changes over time. Modern neural networks are known to suffer under this setting, as they quickly forget previously acquired knowledge. To address such catastrophic forgetting, many continual learning methods implement different types of experience replay, re-learning on past data stored in a small buffer known as episodic memory. In this work, we complement experience replay with a new objective that we call anchoring, where the learner uses bilevel optimization to update its knowledge on the current task, while keeping intact the predictions on some anchor points of past tasks. These anchor points are learned using gradient-based optimization to maximize forgetting, which is approximated by fine-tuning the currently trained model on the episodic memory of past tasks. Experiments on several supervised learning benchmarks for continual learning demonstrate that our approach improves the standard experience replay in terms of both accuracy and forgetting metrics and for various sizes of episodic memories.Comment: Accepted at AAAI 202

    Online Continual Learning of End-to-End Speech Recognition Models

    Full text link
    Continual Learning, also known as Lifelong Learning, aims to continually learn from new data as it becomes available. While prior research on continual learning in automatic speech recognition has focused on the adaptation of models across multiple different speech recognition tasks, in this paper we propose an experimental setting for \textit{online continual learning} for automatic speech recognition of a single task. Specifically focusing on the case where additional training data for the same task becomes available incrementally over time, we demonstrate the effectiveness of performing incremental model updates to end-to-end speech recognition models with an online Gradient Episodic Memory (GEM) method. Moreover, we show that with online continual learning and a selective sampling strategy, we can maintain an accuracy that is similar to retraining a model from scratch while requiring significantly lower computation costs. We have also verified our method with self-supervised learning (SSL) features.Comment: Accepted at InterSpeech 202

    Scalable Recollections for Continual Lifelong Learning

    Full text link
    Given the recent success of Deep Learning applied to a variety of single tasks, it is natural to consider more human-realistic settings. Perhaps the most difficult of these settings is that of continual lifelong learning, where the model must learn online over a continuous stream of non-stationary data. A successful continual lifelong learning system must have three key capabilities: it must learn and adapt over time, it must not forget what it has learned, and it must be efficient in both training time and memory. Recent techniques have focused their efforts primarily on the first two capabilities while questions of efficiency remain largely unexplored. In this paper, we consider the problem of efficient and effective storage of experiences over very large time-frames. In particular we consider the case where typical experiences are O(n) bits and memories are limited to O(k) bits for k << n. We present a novel scalable architecture and training algorithm in this challenging domain and provide an extensive evaluation of its performance. Our results show that we can achieve considerable gains on top of state-of-the-art methods such as GEM.Comment: AAAI 201
    • …
    corecore