3,726 research outputs found

    Gradient Descent Only Converges to Minimizers: Non-Isolated Critical Points and Invariant Regions

    Get PDF
    Given a non-convex twice differentiable cost function f, we prove that the set of initial conditions so that gradient descent converges to saddle points where \nabla^2 f has at least one strictly negative eigenvalue has (Lebesgue) measure zero, even for cost functions f with non-isolated critical points, answering an open question in [Lee, Simchowitz, Jordan, Recht, COLT2016]. Moreover, this result extends to forward-invariant convex subspaces, allowing for weak (non-globally Lipschitz) smoothness assumptions. Finally, we produce an upper bound on the allowable step-size.Comment: 2 figure

    Regularized Jacobi iteration for decentralized convex optimization with separable constraints

    Full text link
    We consider multi-agent, convex optimization programs subject to separable constraints, where the constraint function of each agent involves only its local decision vector, while the decision vectors of all agents are coupled via a common objective function. We focus on a regularized variant of the so called Jacobi algorithm for decentralized computation in such problems. We first consider the case where the objective function is quadratic, and provide a fixed-point theoretic analysis showing that the algorithm converges to a minimizer of the centralized problem. Moreover, we quantify the potential benefits of such an iterative scheme by comparing it against a scaled projected gradient algorithm. We then consider the general case and show that all limit points of the proposed iteration are optimal solutions of the centralized problem. The efficacy of the proposed algorithm is illustrated by applying it to the problem of optimal charging of electric vehicles, where, as opposed to earlier approaches, we show convergence to an optimal charging scheme for a finite, possibly large, number of vehicles
    • …
    corecore