3,443 research outputs found

    Elastic Multi-Gradient Descent for Parallel Continual Learning

    Full text link
    The goal of Continual Learning (CL) is to continuously learn from new data streams and accomplish the corresponding tasks. Previously studied CL assumes that data are given in sequence nose-to-tail for different tasks, thus indeed belonging to Serial Continual Learning (SCL). This paper studies the novel paradigm of Parallel Continual Learning (PCL) in dynamic multi-task scenarios, where a diverse set of tasks is encountered at different time points. PCL presents challenges due to the training of an unspecified number of tasks with varying learning progress, leading to the difficulty of guaranteeing effective model updates for all encountered tasks. In our previous conference work, we focused on measuring and reducing the discrepancy among gradients in a multi-objective optimization problem, which, however, may still contain negative transfers in every model update. To address this issue, in the dynamic multi-objective optimization problem, we introduce task-specific elastic factors to adjust the descent direction towards the Pareto front. The proposed method, called Elastic Multi-Gradient Descent (EMGD), ensures that each update follows an appropriate Pareto descent direction, minimizing any negative impact on previously learned tasks. To balance the training between old and new tasks, we also propose a memory editing mechanism guided by the gradient computed using EMGD. This editing process updates the stored data points, reducing interference in the Pareto descent direction from previous tasks. Experiments on public datasets validate the effectiveness of our EMGD in the PCL setting.Comment: Submited to IEEE TPAM

    Learning an evolved mixture model for task-free continual learning

    Get PDF
    Recently, continual learning (CL) has gained significant interest because it enables deep learning models to acquire new knowledge without forgetting previously learnt information. However, most existing works require knowing the task identities and boundaries, which is not realistic in a real context. In this paper, we address a more challenging and realistic setting in CL, namely the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information. To address TFCL, we introduce an evolved mixture model whose network architecture is dynamically expanded to adapt to the data distribution shift. We implement this expansion mechanism by evaluating the probability distance between the knowledge stored in each mixture model component and the current memory buffer using the Hilbert Schmidt Independence Criterion (HSIC). We further introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload while preserving memory diversity. Empirical results demonstrate that the proposed approach achieves excellent performance.Comment: Accepted by the 29th IEEE International Conference on Image Processing (ICIP 2022

    Recent Advances of Continual Learning in Computer Vision: An Overview

    Full text link
    In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed

    A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning

    Full text link
    Forgetting refers to the loss or deterioration of previously acquired information or knowledge. While the existing surveys on forgetting have primarily focused on continual learning, forgetting is a prevalent phenomenon observed in various other research domains within deep learning. Forgetting manifests in research fields such as generative models due to generator shifts, and federated learning due to heterogeneous data distributions across clients. Addressing forgetting encompasses several challenges, including balancing the retention of old task knowledge with fast learning of new tasks, managing task interference with conflicting goals, and preventing privacy leakage, etc. Moreover, most existing surveys on continual learning implicitly assume that forgetting is always harmful. In contrast, our survey argues that forgetting is a double-edged sword and can be beneficial and desirable in certain cases, such as privacy-preserving scenarios. By exploring forgetting in a broader context, we aim to present a more nuanced understanding of this phenomenon and highlight its potential advantages. Through this comprehensive survey, we aspire to uncover potential solutions by drawing upon ideas and approaches from various fields that have dealt with forgetting. By examining forgetting beyond its conventional boundaries, in future work, we hope to encourage the development of novel strategies for mitigating, harnessing, or even embracing forgetting in real applications. A comprehensive list of papers about forgetting in various research fields is available at \url{https://github.com/EnnengYang/Awesome-Forgetting-in-Deep-Learning}

    Online Lifelong Generalized Zero-Shot Learning

    Full text link
    Methods proposed in the literature for zero-shot learning (ZSL) are typically suitable for offline learning and cannot continually learn from sequential streaming data. The sequential data comes in the form of tasks during training. Recently, a few attempts have been made to handle this issue and develop continual ZSL (CZSL) methods. However, these CZSL methods require clear task-boundary information between the tasks during training, which is not practically possible. This paper proposes a task-free (i.e., task-agnostic) CZSL method, which does not require any task information during continual learning. The proposed task-free CZSL method employs a variational autoencoder (VAE) for performing ZSL. To develop the CZSL method, we combine the concept of experience replay with knowledge distillation and regularization. Here, knowledge distillation is performed using the training sample's dark knowledge, which essentially helps overcome the catastrophic forgetting issue. Further, it is enabled for task-free learning using short-term memory. Finally, a classifier is trained on the synthetic features generated at the latent space of the VAE. Moreover, the experiments are conducted in a challenging and practical ZSL setup, i.e., generalized ZSL (GZSL). These experiments are conducted for two kinds of single-head continual learning settings: (i) mild setting-: task-boundary is known only during training but not during testing; (ii) strict setting-: task-boundary is not known at training, as well as testing. Experimental results on five benchmark datasets exhibit the validity of the approach for CZSL

    Multi-View Class Incremental Learning

    Full text link
    Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance. To make MVL methods more practical in an open-ended environment, this paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views, requiring no access to earlier views of data. However, MVCIL is challenged by the catastrophic forgetting of old information and the interference with learning new concepts. To address this, we first develop a randomization-based representation learning technique serving for feature extraction to guarantee their separate view-optimal working states, during which multiple views belonging to a class are presented sequentially; Then, we integrate them one by one in the orthogonality fusion subspace spanned by the extracted features; Finally, we introduce selective weight consolidation for learning-without-forgetting decision-making while encountering new classes. Extensive experiments on synthetic and real-world datasets validate the effectiveness of our approach.Comment: 34 pages,4 figures. Under revie

    PCR: Proxy-based Contrastive Replay for Online Class-Incremental Continual Learning

    Full text link
    Online class-incremental continual learning is a specific task of continual learning. It aims to continuously learn new classes from data stream and the samples of data stream are seen only once, which suffers from the catastrophic forgetting issue, i.e., forgetting historical knowledge of old classes. Existing replay-based methods effectively alleviate this issue by saving and replaying part of old data in a proxy-based or contrastive-based replay manner. Although these two replay manners are effective, the former would incline to new classes due to class imbalance issues, and the latter is unstable and hard to converge because of the limited number of samples. In this paper, we conduct a comprehensive analysis of these two replay manners and find that they can be complementary. Inspired by this finding, we propose a novel replay-based method called proxy-based contrastive replay (PCR). The key operation is to replace the contrastive samples of anchors with corresponding proxies in the contrastive-based way. It alleviates the phenomenon of catastrophic forgetting by effectively addressing the imbalance issue, as well as keeps a faster convergence of the model. We conduct extensive experiments on three real-world benchmark datasets, and empirical results consistently demonstrate the superiority of PCR over various state-of-the-art methods.Comment: To appear in CVPR 2023. 10 pages, 8 figures and 3 table

    Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors

    Full text link
    Large pre-trained models decay over long-term deployment as input distributions shift, user requirements change, or crucial knowledge gaps are discovered. Recently, model editors have been proposed to modify a model's behavior by adjusting its weights during deployment. However, when editing the same model multiple times, these approaches quickly decay a model's performance on upstream data and forget how to fix previous errors. We propose and study a novel Lifelong Model Editing setting, where streaming errors are identified for a deployed model and we update the model to correct its predictions without influencing unrelated inputs without access to training edits, exogenous datasets, or any upstream data for the edited model. To approach this problem, we introduce General Retrieval Adaptors for Continual Editing, or GRACE, which learns to cache a chosen layer's activations in an adaptive codebook as edits stream in, leaving original model weights frozen. GRACE can thus edit models thousands of times in a row using only streaming errors, while minimally influencing unrelated inputs. Experimentally, we show that GRACE improves over recent model editors and generalizes to unseen inputs. Our code is available at https://www.github.com/thartvigsen/grace

    Continual Semantic Segmentation with Automatic Memory Sample Selection

    Full text link
    Continual Semantic Segmentation (CSS) extends static semantic segmentation by incrementally introducing new classes for training. To alleviate the catastrophic forgetting issue in CSS, a memory buffer that stores a small number of samples from the previous classes is constructed for replay. However, existing methods select the memory samples either randomly or based on a single-factor-driven handcrafted strategy, which has no guarantee to be optimal. In this work, we propose a novel memory sample selection mechanism that selects informative samples for effective replay in a fully automatic way by considering comprehensive factors including sample diversity and class performance. Our mechanism regards the selection operation as a decision-making process and learns an optimal selection policy that directly maximizes the validation performance on a reward set. To facilitate the selection decision, we design a novel state representation and a dual-stage action space. Our extensive experiments on Pascal-VOC 2012 and ADE 20K datasets demonstrate the effectiveness of our approach with state-of-the-art (SOTA) performance achieved, outperforming the second-place one by 12.54% for the 6stage setting on Pascal-VOC 2012.Comment: Accepted to CVPR202
    corecore