4 research outputs found

    Graceful Degradation of CACC Performance Subject to Unreliable Wireless Communication

    No full text
    Cooperative Adaptive Cruise Control (CACC) employs wireless intervehicle communication, in addition to onboard sensors, to obtain string-stable vehicle-following behavior at small intervehicle distances. As a consequence, however, CACC is vulnerable to communication impairments such as packet loss, in which case it would effectively degrade to conventional Adaptive Cruise Control (ACC), thereby increasing the minimal intervehicle distance needed for string-stable behavior. Therefore, a control strategy for graceful degradation of one-vehicle look-ahead CACC is proposed to partially maintain the string stability properties of CACC. This strategy is based on estimating the preceding vehicle's information, here acceleration, using the onboard sensors. Whenever needed, this estimated acceleration can be used as an alternative to the desired acceleration transmitted through wireless communication for this type of CACC. It is shown through simulations and experiments that the proposed strategy results in a noticeable improvement of string stability characteristics, when compared to the situation in which ACC is used as a fallback scenario

    A Resilient Control Approach to Secure Cyber Physical Systems (CPS) with an Application on Connected Vehicles

    Get PDF
    The objective of this dissertation is to develop a resilient control approach to secure Cyber Physical Systems (CPS) against cyber-attacks, network failures and potential physical faults. Despite being potentially beneficial in several aspects, the connectivity in CPSs poses a set of specific challenges from safety and reliability standpoint. The first challenge arises from unreliable communication network which affects the control/management of overall system. Second, faulty sensors and actuators can degrade the performance of CPS and send wrong information to the controller or other subsystems of the CPS. Finally, CPSs are vulnerable to cyber-attacks which can potentially lead to dangerous scenarios by affecting the information transmitted among various components of CPSs. Hence, a resilient control approach is proposed to address these challenges. The control approach consists of three main parts:(1) Physical fault diagnostics: This part makes sure the CPS works normally while there is no cyber-attacks/ network failure in the communication network; (2) Cyber-attack/failure resilient strategy: This part consists of a resilient strategy for specific cyber-attacks to compensate for their malicious effects ; (3) Decision making algorithm: The decision making block identifies the specific existing cyber-attacks/ network failure in the system and deploys corresponding control strategy to minimize the effect of abnormality in the system performance. In this dissertation, we consider a platoon of connected vehicle system under Co-operative Adaptive Cruise Control (CACC) strategy as a CPS and develop a resilient control approach to address the aforementioned challenges. The first part of this dissertation investigates fault diagnostics of connected vehicles assuming ideal communication network. Very few works address the real-time diagnostics problem in connected vehicles. This study models the effect of different faults in sensors and actuators, and also develops fault diagnosis scheme for detectable and identifiable faults. The proposed diagnostics scheme is based on sliding model observers to detect, isolate and estimate faults in the sensors and actuators. One of the main advantages of sliding model approach lies in applicability to nonlinear systems. Therefore, the proposed method can be extended for other nonlinear cyber physical systems as well. The second part of the proposed research deals with developing strategies to maintain performance of cyber-physical systems close to the normal, in the presence of common cyber-attacks and network failures. Specifically, the behavior of Dedicated Short-Range Communication (DSRC) network is analyzed under cyber-attacks and failures including packet dropping, Denial of Service (DOS) attack and false data injection attack. To start with, packet dropping in network communication is modeled by Bernoulli random variable. Then an observer based modifying algorithm is proposed to modify the existing CACC strategy against the effect of packet dropping phenomena. In contrast to the existing works on state estimation over imperfect communication network in CPS which mainly use either holding previous received data or Kalman filter with intermittent observation, a combination of these two approaches is used to construct the missing data over packet dropping phenomena. Furthermore, an observer based fault diagnostics based on sliding mode approach is proposed to detect, isolate and estimate sensor faults in connected vehicles platoon. Next, Denial of Service (DoS) attack is considered on the communication network. The effect of DoS attack is modeled as an unknown stochastic delay in data delivery in the communication network. Then an observer based approach is proposed to estimate the real data from the delayed measured data over the network. A novel approach based on LMI theory is presented to design observer and estimate the states of the system via delayed measurements. Next, we explore and alternative approach by modeling DoS with unknown constant time delay and propose an adaptive observer to estimate the delay. Furthermore, we study the effects of system uncertainties on the DoS algorithm. In the third algorithm, we considered a general CPS with a saturated DoS attack modeled with constant unknown delay. In this part, we modeled the DoS via a PDE and developed a PDE based observer to estimate the delay as well as states of the system while the only available measurements are delayed. Furthermore, as the last cyber-attack of the second part of the dissertation, we consider false data injection attack as the fake vehicle identity in the platoon of vehicles. In this part, we develop a novel PDE-based modeling strategy for the platoon of vehicles equipped with CACC. Moreover, we propose a PDE based observer to detect and isolate the location of the false data injection attack injected into the platoon as fake identity. Finally, the third part of the dissertation deals with the ongoing works on an optimum decision making strategy formulated via Model Predictive Control (MPC). The decision making block is developed to choose the optimum strategy among available strategies designed in the second part of the dissertation

    Leveraging Connected Highway Vehicle Platooning Technology to Improve the Efficiency and Effectiveness of Train Fleeting Under Moving Blocks

    Get PDF
    Future advanced Positive Train Control systems may allow North American railroads to introduce moving blocks with shorter train headways. This research examines how closely following trains respond to different throttle and brake inputs. Using insights from connected automobile and truck platooning technology, six different following train control algorithms were developed, analyzed for stability, and evaluated with simulated fleets of freight trains. While moving blocks require additional train spacing beyond minimum safe braking distance to account for train control actions, certain following train algorithms can help minimize this distance and balance fuel efficiency and train headway by changing control parameters

    Safe and Secure Control of Connected and Automated Vehicles

    Get PDF
    Evolution of Connected and Automated Vehicles (CAV), as an important class of Cyber-Physical Systems (CPS), plays a crucial role in providing innovative services in transport and traffic management. Vehicle platoons, as a set of CAV, forming a string of connected vehicles, have offered significant enhancements in traffic management, energy consumption, and safety in intelligent transportation systems. However, due to the existence of the cyber layer in these systems, subtle security related issues have been underlined and need to be taken into account with sufficient attention. In fact, despite the benefits brought by the platoons, they potentially suffer from insecure networks which provide the connectivity among the vehicles participating in the platoon which makes these systems prone to be under the risk of cyber attacks. One (or more) external intelligent intruder(s) might attack one (or more) of the vehicles participating in a platoon. In this respect, the need for a safe and secure driving experience is highly sensible and crucial. Hence, we will concentrate on improving the safety and security of CAVs in different scenarios by taking advantage of security related approaches and CAV control systems. In this thesis, we are going to focus on two main levels of platoon control, namely I) High level secure platoon control, and II) Low level secure platoon control. In particular, in the high level part, we consider platoons with arbitrary inter-vehicular communication topoloy whereby the vehicles are able to exchange their driving data with each other through DSRC-based environment. The whole platoon is modeled using graph-theoretic notions by denoting the vehicles as the nodes and the inter-vehicular communication quality as the edge weights. We study the security of the vehicle platoon exposed to cyber attacks using a novel game-theoretic approach. The platoon topologies under investigation are directed (called predecessor following) or undirected (bidirectional) weighted graphs. The attacker-detector game is defined as follows. The attacker targets some vehicles in the platoon to attack and the detector deploys monitoring sensors on the vehicles. The attacker's objective is to be as stealthy to the sensors as possible while the detector tries to place the monitoring sensors to detect the attack impact as much as he can. The existence of equilibrium strategies for this game is investigated based on which the detector can choose specific vehicles to put his sensors on and increase the security level of the system. Moreover, we study the effect of adding (or removing) communication links between vehicles on the game value. We then address the same problem while investigating the optimal actuator placement strategy needed by the defender to mitigate the effects of the attack. In this respect, the energy needed by the attacker to steer the consensus follower-leader dynamics of the system towards his desired direction is used as the game payoff. Simulation and experimental results conducted on a vehicle platoon setup using Robotic Operating System (ROS) demonstrate the effectiveness of our analyses. In the low level platoon control, we exploit novel secure model predictive controller algorithms to provide suitable countermeasure against a prevalent data availability attack, namely Denial-of-Service (DoS) attack. A DoS intruder can endanger the security of platoon by jamming the communication network among the vehicles which is responsible to transmit inter-vehicular data throughout the platoon. In other words, he may cause a failure in the network by jamming it or injecting a huge amount of delay, which in essence makes the outdated transferred data useless. This can potentially result in huge performance degradation or even hazardous collisions. We propose novel secure distributed nonlinear model predictive control algorithms for both static and dynamic nonlinear heterogeneous platoons which are capable of handling DoS attack performed on a platoon equipped by different communication topologies and at the same time they guarantee the desired formation control performance. Notably, in the dynamic case, our proposed method is capable of providing safe and secure control of the platoon in which arbitrary vehicles might perform cut-in and/or cut-out maneuvers. Convergence time analysis of the system are also investigated. Simulation results on a sample heterogeneous attacked platoon exploiting two-predecessor follower communication environment demonstrates the fruitfulness of the method
    corecore