1,432 research outputs found

    Convolutional Goppa Codes

    Full text link
    We define Convolutional Goppa Codes over algebraic curves and construct their corresponding dual codes. Examples over the projective line and over elliptic curves are described, obtaining in particular some Maximum-Distance Separable (MDS) convolutional codes.Comment: 8 pages, submitted to IEEE Trans. Inform. Theor

    Folding Alternant and Goppa Codes with Non-Trivial Automorphism Groups

    Get PDF
    The main practical limitation of the McEliece public-key encryption scheme is probably the size of its key. A famous trend to overcome this issue is to focus on subclasses of alternant/Goppa codes with a non trivial automorphism group. Such codes display then symmetries allowing compact parity-check or generator matrices. For instance, a key-reduction is obtained by taking quasi-cyclic (QC) or quasi-dyadic (QD) alternant/Goppa codes. We show that the use of such symmetric alternant/Goppa codes in cryptography introduces a fundamental weakness. It is indeed possible to reduce the key-recovery on the original symmetric public-code to the key-recovery on a (much) smaller code that has not anymore symmetries. This result is obtained thanks to a new operation on codes called folding that exploits the knowledge of the automorphism group. This operation consists in adding the coordinates of codewords which belong to the same orbit under the action of the automorphism group. The advantage is twofold: the reduction factor can be as large as the size of the orbits, and it preserves a fundamental property: folding the dual of an alternant (resp. Goppa) code provides the dual of an alternant (resp. Goppa) code. A key point is to show that all the existing constructions of alternant/Goppa codes with symmetries follow a common principal of taking codes whose support is globally invariant under the action of affine transformations (by building upon prior works of T. Berger and A. D{\"{u}}r). This enables not only to present a unified view but also to generalize the construction of QC, QD and even quasi-monoidic (QM) Goppa codes. All in all, our results can be harnessed to boost up any key-recovery attack on McEliece systems based on symmetric alternant or Goppa codes, and in particular algebraic attacks.Comment: 19 page

    Constructions of Pure Asymmetric Quantum Alternant Codes Based on Subclasses of Alternant Codes

    Full text link
    In this paper, we construct asymmetric quantum error-correcting codes(AQCs) based on subclasses of Alternant codes. Firstly, We propose a new subclass of Alternant codes which can attain the classical Gilbert-Varshamov bound to construct AQCs. It is shown that when dx=2d_x=2, ZZ-parts of the AQCs can attain the classical Gilbert-Varshamov bound. Then we construct AQCs based on a famous subclass of Alternant codes called Goppa codes. As an illustrative example, we get three [[55,6,19/4]],[[55,10,19/3]],[[55,15,19/2]][[55,6,19/4]],[[55,10,19/3]],[[55,15,19/2]] AQCs from the well known [55,16,19][55,16,19] binary Goppa code. At last, we get asymptotically good binary expansions of asymmetric quantum GRS codes, which are quantum generalizations of Retter's classical results. All the AQCs constructed in this paper are pure

    Twisting Goppa Codes

    Get PDF
    10 pagesInternational audienceThe aim of this paper is to explain how, starting from a Goppa code C(X, G, P1, . . . , Pn) and a cyclic covering π : Y → X of degree m, oone can twist the initial code to another one C(X, G + Dχ , P1, . . . , Pn), where Dχ is a non-principal degree 0 divisor on X associated to a character χ of Gal(Y /X), in the hope that X (G + Dχ) > X (G). We give, using a MAGMA program, several examples where this occurs, and where both the initial and twisted codes have same minimum distance, so that initial codes have been improved
    • …
    corecore