47 research outputs found

    On a projection-corrected component-by-component construction

    Full text link
    The component-by-component construction is the standard method of finding good lattice rules or polynomial lattice rules for numerical integration. Several authors have reported that in numerical experiments the generating vector sometimes has repeated components. We study a variation of the classical component-by-component algorithm for the construction of lattice or polynomial lattice point sets where the components are forced to differ from each other. This avoids the problem of having projections where all quadrature points lie on the main diagonal. Since the previous results on the worst-case error do not apply to this modified algorithm, we prove such an error bound here. We also discuss further restrictions on the choice of components in the component-by-component algorithm

    Multi-level higher order QMC Galerkin discretization for affine parametric operator equations

    Full text link
    We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [\emph{F.Y.~Kuo, Ch.~Schwab, and I.H.~Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient} (in review)] and the single level higher order analysis in [\emph{J.~Dick, F.Y.~Kuo, Q.T.~Le~Gia, D.~Nuyens, and Ch.~Schwab, Higher order QMC Galerkin discretization for parametric operator equations} (in review)]. We cover, in particular, both definite as well as indefinite, strongly elliptic systems of partial differential equations (PDEs) in non-smooth domains, and discuss in detail the impact of higher order derivatives of {\KL} eigenfunctions in the parametrization of random PDE inputs on the convergence results. Based on our \emph{a-priori} error bounds, concrete choices of algorithm parameters are proposed in order to achieve a prescribed accuracy under minimal computational work. Problem classes and sufficient conditions on data are identified where multi-level higher order QMC Petrov-Galerkin algorithms outperform the corresponding single level versions of these algorithms. Numerical experiments confirm the theoretical results

    Recent advances in higher order quasi-Monte Carlo methods

    Full text link
    In this article we review some of recent results on higher order quasi-Monte Carlo (HoQMC) methods. After a seminal work by Dick (2007, 2008) who originally introduced the concept of HoQMC, there have been significant theoretical progresses on HoQMC in terms of discrepancy as well as multivariate numerical integration. Moreover, several successful and promising applications of HoQMC to partial differential equations with random coefficients and Bayesian estimation/inversion problems have been reported recently. In this article we start with standard quasi-Monte Carlo methods based on digital nets and sequences in the sense of Niederreiter, and then move onto their higher order version due to Dick. The Walsh analysis of smooth functions plays a crucial role in developing the theory of HoQMC, and the aim of this article is to provide a unified picture on how the Walsh analysis enables recent developments of HoQMC both for discrepancy and numerical integration
    corecore