research

Multi-level higher order QMC Galerkin discretization for affine parametric operator equations

Abstract

We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [\emph{F.Y.~Kuo, Ch.~Schwab, and I.H.~Sloan, Multi-level quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient} (in review)] and the single level higher order analysis in [\emph{J.~Dick, F.Y.~Kuo, Q.T.~Le~Gia, D.~Nuyens, and Ch.~Schwab, Higher order QMC Galerkin discretization for parametric operator equations} (in review)]. We cover, in particular, both definite as well as indefinite, strongly elliptic systems of partial differential equations (PDEs) in non-smooth domains, and discuss in detail the impact of higher order derivatives of {\KL} eigenfunctions in the parametrization of random PDE inputs on the convergence results. Based on our \emph{a-priori} error bounds, concrete choices of algorithm parameters are proposed in order to achieve a prescribed accuracy under minimal computational work. Problem classes and sufficient conditions on data are identified where multi-level higher order QMC Petrov-Galerkin algorithms outperform the corresponding single level versions of these algorithms. Numerical experiments confirm the theoretical results

    Similar works