9,000 research outputs found

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    An Adaptive Entanglement Distillation Scheme Using Quantum Low Density Parity Check Codes

    Full text link
    Quantum low density parity check (QLDPC) codes are useful primitives for quantum information processing because they can be encoded and decoded efficiently. Besides, the error correcting capability of a few QLDPC codes exceeds the quantum Gilbert-Varshamov bound. Here, we report a numerical performance analysis of an adaptive entanglement distillation scheme using QLDPC codes. In particular, we find that the expected yield of our adaptive distillation scheme to combat depolarization errors exceed that of Leung and Shor whenever the error probability is less than about 0.07 or greater than about 0.28. This finding illustrates the effectiveness of using QLDPC codes in entanglement distillation.Comment: 12 pages, 6 figure

    Noise-Resilient Group Testing: Limitations and Constructions

    Full text link
    We study combinatorial group testing schemes for learning dd-sparse Boolean vectors using highly unreliable disjunctive measurements. We consider an adversarial noise model that only limits the number of false observations, and show that any noise-resilient scheme in this model can only approximately reconstruct the sparse vector. On the positive side, we take this barrier to our advantage and show that approximate reconstruction (within a satisfactory degree of approximation) allows us to break the information theoretic lower bound of Ω~(d2logn)\tilde{\Omega}(d^2 \log n) that is known for exact reconstruction of dd-sparse vectors of length nn via non-adaptive measurements, by a multiplicative factor Ω~(d)\tilde{\Omega}(d). Specifically, we give simple randomized constructions of non-adaptive measurement schemes, with m=O(dlogn)m=O(d \log n) measurements, that allow efficient reconstruction of dd-sparse vectors up to O(d)O(d) false positives even in the presence of δm\delta m false positives and O(m/d)O(m/d) false negatives within the measurement outcomes, for any constant δ<1\delta < 1. We show that, information theoretically, none of these parameters can be substantially improved without dramatically affecting the others. Furthermore, we obtain several explicit constructions, in particular one matching the randomized trade-off but using m=O(d1+o(1)logn)m = O(d^{1+o(1)} \log n) measurements. We also obtain explicit constructions that allow fast reconstruction in time \poly(m), which would be sublinear in nn for sufficiently sparse vectors. The main tool used in our construction is the list-decoding view of randomness condensers and extractors.Comment: Full version. A preliminary summary of this work appears (under the same title) in proceedings of the 17th International Symposium on Fundamentals of Computation Theory (FCT 2009

    Public key cryptography and error correcting codes as Ising models

    Full text link
    We employ the methods of statistical physics to study the performance of Gallager type error-correcting codes. In this approach, the transmitted codeword comprises Boolean sums of the original message bits selected by two randomly-constructed sparse matrices. We show that a broad range of these codes potentially saturate Shannon's bound but are limited due to the decoding dynamics used. Other codes show sub-optimal performance but are not restricted by the decoding dynamics. We show how these codes may also be employed as a practical public-key cryptosystem and are of competitive performance to modern cyptographical methods.Comment: 6 page

    Quantum Error Correction beyond the Bounded Distance Decoding Limit

    Full text link
    In this paper, we consider quantum error correction over depolarizing channels with non-binary low-density parity-check codes defined over Galois field of size 2p2^p . The proposed quantum error correcting codes are based on the binary quasi-cyclic CSS (Calderbank, Shor and Steane) codes. The resulting quantum codes outperform the best known quantum codes and surpass the performance limit of the bounded distance decoder. By increasing the size of the underlying Galois field, i.e., 2p2^p, the error floors are considerably improved.Comment: To appear in IEEE Transactions on Information Theor

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Using LDGM Codes and Sparse Syndromes to Achieve Digital Signatures

    Full text link
    In this paper, we address the problem of achieving efficient code-based digital signatures with small public keys. The solution we propose exploits sparse syndromes and randomly designed low-density generator matrix codes. Based on our evaluations, the proposed scheme is able to outperform existing solutions, permitting to achieve considerable security levels with very small public keys.Comment: 16 pages. The final publication is available at springerlink.co
    corecore