2,372 research outputs found
The implications of embodiment for behavior and cognition: animal and robotic case studies
In this paper, we will argue that if we want to understand the function of
the brain (or the control in the case of robots), we must understand how the
brain is embedded into the physical system, and how the organism interacts with
the real world. While embodiment has often been used in its trivial meaning,
i.e. 'intelligence requires a body', the concept has deeper and more important
implications, concerned with the relation between physical and information
(neural, control) processes. A number of case studies are presented to
illustrate the concept. These involve animals and robots and are concentrated
around locomotion, grasping, and visual perception. A theoretical scheme that
can be used to embed the diverse case studies will be presented. Finally, we
will establish a link between the low-level sensory-motor processes and
cognition. We will present an embodied view on categorization, and propose the
concepts of 'body schema' and 'forward models' as a natural extension of the
embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of
Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5
Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics
Developmental robotics is an emerging field located
at the intersection of developmental psychology
and robotics, that has lately attracted
quite some attention. This paper gives a survey of
a variety of research projects dealing with or inspired
by developmental issues, and outlines possible
future directions
Towards Contextual Action Recognition and Target Localization with Active Allocation of Attention
Exploratory gaze movements are fundamental for gathering the most relevant information regarding the partner during social interactions. We have designed and implemented a system for dynamic attention allocation which is able to actively control gaze movements during a visual action recognition task. During the observation of a partners reaching movement, the robot is able to contextually estimate the goal position of the partner hand and the location in space of the candidate targets, while moving its gaze around with the purpose of optimizing the gathering of information relevant for the task. Experimental results on a simulated environment show that active gaze control provides a relevant advantage with respect to typical passive observation, both in term of estimation precision and of time required for action recognition. © 2012 Springer-Verlag
Towards Active Event Recognition
Directing robot attention to recognise activities and to anticipate events like goal-directed actions is a crucial skill for human-robot interaction. Unfortunately, issues like intrinsic time constraints, the spatially distributed nature of the entailed information sources, and the existence of a multitude of unobservable states affecting the system, like latent intentions, have long rendered achievement of such skills a rather elusive goal. The problem tests the limits of current attention control systems. It requires an integrated solution for tracking, exploration and recognition, which traditionally have been seen as separate problems in active vision.We propose a probabilistic generative framework based on a mixture of Kalman filters and information gain maximisation that uses predictions in both recognition and attention-control. This framework can efficiently use the observations of one element in a dynamic environment to provide information on other elements, and consequently enables guided exploration.Interestingly, the sensors-control policy, directly derived from first principles, represents the intuitive trade-off between finding the most discriminative clues and maintaining overall awareness.Experiments on a simulated humanoid robot observing a human executing goal-oriented actions demonstrated improvement on recognition time and precision over baseline systems
Adaptive saccade controller inspired by the primates' cerebellum
Saccades are fast eye movements that allow humans and robots to bring the visual target in the center of the visual field. Saccades are open loop with respect to the vision system, thus their execution require a precise knowledge of the internal model of the oculomotor system. In this work, we modeled the saccade control, taking inspiration from the recurrent loops between the cerebellum and the brainstem. In this model, the brainstem acts as a fixed-inverse model of the oculomotor system, while the cerebellum acts as an adaptive element that learns the internal model of the oculomotor system. The adaptive filter is implemented using a state-of-the-art neural network, called I-SSGPR. The proposed approach, namely recurrent architecture, was validated through experiments performed both in simulation and on an antropomorphic robotic head. Moreover, we compared the recurrent architecture with another model of the cerebellum, the feedback error learning. Achieved results show that the recurrent architecture outperforms the feedback error learning in terms of accuracy and insensitivity to the choice of the feedback controller
EEG theta and Mu oscillations during perception of human and robot actions.
The perception of others' actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8-13 Hz) and frontal theta (4-8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other
Exploiting the robot kinematic redundancy for emotion conveyance to humans as a lower priority task
Current approaches do not allow robots to execute a task and simultaneously convey emotions to users using their body motions. This paper explores the capabilities of the Jacobian null space of a humanoid robot to convey emotions. A task priority formulation has been implemented in a Pepper robot which allows the specification of a primary task (waving gesture, transportation of an object, etc.) and exploits the kinematic redundancy of the robot to convey emotions to humans as a lower priority task. The emotions, defined by Mehrabian as points in the pleasure–arousal–dominance space, generate intermediate motion features (jerkiness, activity and gaze) that carry the emotional information. A map from this features to the joints of the robot is presented. A user study has been conducted in which emotional motions have been shown to 30 participants. The results show that happiness and sadness are very well conveyed to the user, calm is moderately well conveyed, and fear is not well conveyed. An analysis on the dependencies between the motion features and the emotions perceived by the participants shows that activity correlates positively with arousal, jerkiness is not perceived by the user, and gaze conveys dominance when activity is low. The results indicate a strong influence of the most energetic motions of the emotional task and point out new directions for further research. Overall, the results show that the null space approach can be regarded as a promising mean to convey emotions as a lower priority task.Postprint (author's final draft
- …
