15 research outputs found

    Na/K pump regulation of cardiac repolarization: Insights from a systems biology approach

    Get PDF
    The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the Systems Biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most\ud important ionic mechanisms in regulating key properties of cardiac repolarization and its rate-dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies

    Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization

    Get PDF
    Structural heterogeneity constitutes one of the main substrates influencing impulse propagation in living tissues. In cardiac muscle, improved understanding on its role is key to advancing our interpretation of cell-to-cell coupling, and how tissue structure modulates electrical propagation and arrhythmogenesis in the intact and diseased heart. We propose fractional diffusion models as a novel mathematical description of structurally heterogeneous excitable media, as a mean of representing the modulation of the total electric field by the secondary electrical sources associated with tissue inhomogeneities. Our results, validated against in-vivo human recordings and experimental data of different animal species, indicate that structural heterogeneity underlies many relevant characteristics of cardiac propagation, including the shortening of action potential duration along the activation pathway, and the progressive modulation by premature beats of spatial patterns of dispersion of repolarization. The proposed approach may also have important implications in other research fields involving excitable complex media

    Minimizing synchronizations in sparse iterative solvers for distributed supercomputers

    Get PDF
    Eliminating synchronizations is one of the important techniques related to minimizing communications for modern high performance computing. This paper discusses principles of reducing communications due to global synchronizations in sparse iterative solvers on distributed supercomputers. We demonstrates how to minimizing global synchronizations by rescheduling a typical Krylov subspace method. The benefit of minimizing synchronizations is shown in theoretical analysis and is verified by numerical experiments using up to 900 processors. The experiments also show the communication complexity for some structured sparse matrix vector multiplications and global communications in the underlying supercomputers are in the order P1/2.5 and P4/5 respectively, where P is the number of processors and the experiments were carried on a Dawning 5000A

    A lattice Boltzmann model for natural convection in cavities

    Get PDF
    We study a multiple relaxation time lattice Boltzmann model for natural convection with moment–based boundary conditions. The unknown primary variables of the algorithm at a boundary are found by imposing conditions directly upon hydrodynamic moments, which are then translated into conditions for the discrete velocity distribution functions. The method is formulated so that it is consistent with the second–order implementation of the discrete velocity Boltzmann equations for fluid flow and temperature. Natural convection in square cavities is studied for Rayleigh numbers ranging from 103 to 106. An excellent agreement with benchmark data is observed and the flow fields are shown to converge with second order accuracy

    Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    Get PDF
    We investigate the problem of an axially-loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system

    RBF multiscale collocation for second order elliptic boundary value problems

    Get PDF
    In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multi-level fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. On each level, standard symmetric collocation is employed. A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions. We are able to show that the convergence is linear in the number of levels. We also discuss the condition numbers of the arising systems and the effect of simple, diagonal preconditioners, now proving rigorously previous numerical observations

    Video Surveillance-Based Intelligent Traffic Management in Smart Cities

    Get PDF
    Visualization of video is considered as important part of visual analytics. Several challenges arise from massive video contents that can be resolved by using data analytics and consequently gaining significance. Though rapid progression in digital technologies resulted in videos data explosion that incites the requirements to create visualization and computer graphics from videos, a state-of-the-art algorithm has been proposed in this chapter for 3D conversion of traffic video contents and displaying on Google Maps. Time stamped visualization based on glyph is employed efficiently in surveillance videos and utilized for event detection. This method of visualization can possibly decrease the complexity of data, having complete view of videos from video collection. The effectiveness of proposed system has shown by obtaining numerous unprocessed videos and algorithm is tested on these videos without concerning field conditions. The proposed visualization technique produces promising results and found effective in conveying meaningful information while alleviating the need of searching exhaustively colossal amount of video data

    Rivulet flow round a horizontal cylinder subject to a\ud uniform surface shear stress

    Get PDF
    The steady flow of a slowly varying rivulet with prescribed flux in the azimuthal direction round a large stationary horizontal cylinder subject to a prescribed uniform azimuthal surface shear stress is investigated. In particular, we focus on the case where the volume flux is downwards but the shear stress is upwards, for which there is always a solution corresponding to a rivulet flowing down at least part of one side of the cylinder. We consider both a rivulet with constant non-zero contact angle but slowly varying width (i.e. de-pinned contact lines) and a rivulet with constant width but slowly varying contact angle (i.e. pinned contact lines), and show that they have qualitatively different behaviour. When shear is present, a rivulet with constant non-zero contact angle can never run all the way from the top to the bottom of the cylinder, and so we consider the scenario in which an infinitely wide two-dimensional film of uniform thickness covers part of the upper half of the cylinder and “breaks” into a single rivulet with constant non-zero contact angle. In contrast, a sufficiently narrow rivulet with constant width can run all the way from the top to the bottom of the cylinder, whereas a wide rivulet can do so only if its contact lines de-pin, and so we consider the scenario in which the contact lines of a wide rivulet de-pin on the lower half of the cylinder

    VisForum: A visual analysis system for exploring user groups in online forums

    Get PDF
    User grouping in asynchronous online forums is a common phenomenon nowadays. People with similar backgrounds or shared interests like to get together in group discussions. As tens of thousands of archived conversational posts accumulate, challenges emerge for forum administrators and analysts to effectively explore user groups in large-volume threads and gain meaningful insights into the hierarchical discussions. Identifying and comparing groups in discussion threads are nontrivial, since the number of users and posts increases with time and noises may hamper the detection of user groups. Researchers in data mining fields have proposed a large body of algorithms to explore user grouping. However, the mining result is not intuitive to understand and difficult for users to explore the details. To address these issues, we present VisForum, a visual analytic system allowing people to interactively explore user groups in a forum. We work closely with two educators who have released courses in Massive Open Online Courses (MOOC) platforms to compile a list of design goals to guide our design. Then, we design and implement a multi-coordinated interface as well as several novel glyphs, i.e., group glyph, user glyph, and set glyph, with different granularities. Accordingly, we propose the group Detecting 8 Sorting Algorithm to reduce noises in a collection of posts, and employ the concept of “forum-index” for users to identify high-impact forum members. Two case studies using real-world datasets demonstrate the usefulness of the system and the effectiveness of novel glyph designs. Furthermore, we conduct an in-lab user study to present the usability of VisForum.</jats:p

    CASA::tracking the past and plotting the future

    Get PDF
    The human semen sample carries a wealth of information of varying degrees of accessibility ranging from the traditional visual measures of count and motility to those that need a more computational approach, such as tracking the flagellar waveform. Although computer-aided sperm analysis (CASA) options are becoming more widespread, the gold standard for clinical semen analysis requires trained laboratory staff. In this review we characterise the key attitudes towards the use of CASA and set out areas in which CASA should, and should not, be used and improved. We provide an overview of the current CASA landscape, discussing clinical uses as well as potential areas for the clinical translation of existing research technologies. Finally, we discuss where we see potential for the future of CASA, and how the integration of mathematical modelling and new technologies, such as automated flagellar tracking, may open new doors in clinical semen analysis.</jats:p
    corecore