64,647 research outputs found

    Normal forms for rational difference equations with applications to the global periodicity problem

    Get PDF
    We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations

    Global periodicity conditions for maps and recurrences via Normal Forms

    Get PDF
    We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences.Comment: 25 page

    On the global dynamics of periodic triangular maps

    Get PDF
    This paper is an extension of an earlier paper that dealt with global dynamics in autonomous triangular maps. In the current paper, we extend the results on global dynamics of autonomous triangular maps to periodic non-autonomous triangular maps. We show that, under certain conditions, the orbit of every point in a periodic non-autonomous triangular map converges to a fixed point (respectively, periodic orbit of period pp) if and only if there is no periodic orbit of prime period two (respectively, periodic orbits of prime period greater than pp).Comment: 17 pages, 2 figure

    Dynamics of a rational system of difference equations in the plane

    Get PDF
    We consider a rational system of first order difference equations in the plane with four parameters such that all fractions have a common denominator. We study, for the different values of the parameters, the global and local properties of the system. In particular, we discuss the boundedness and the asymptotic behavior of the solutions, the existence of periodic solutions and the stability of equilibria

    Monotone flows with dense periodic orbits

    Get PDF
    The main result is Theorem 1: A flow on a connected open set X ⊂ Rd is globally periodic provided (i) periodic points are dense in X, and (ii) at all positive times the flow preserves the partial order defined by a closed convex cone that has nonempty interior and contains no straight line. The proof uses the analog for homeomorphisms due to B. Lemmens et al. [27], a classical theorem of D. Montgomery [31, 32], and a sufficient condition for the nonstationary periodic points in a closed order interval to have rationally related periods (Theorem 2)
    corecore