64,647 research outputs found
Normal forms for rational difference equations with applications to the global periodicity problem
We propose a classification and derive the associated normal forms for rational difference equations with complex coefficients. As an application, we study the global periodicity problem for second order rational difference equations with complex coefficients. We find new necessary conditions as well as some new examples of globally periodic equations
Global periodicity conditions for maps and recurrences via Normal Forms
We face the problem of characterizing the periodic cases in parametric
families of (real or complex) rational diffeomorphisms having a fixed point.
Our approach relies on the Normal Form Theory, to obtain necessary conditions
for the existence of a formal linearization of the map, and on the introduction
of a suitable rational parametrization of the parameters of the family. Using
these tools we can find a finite set of values p for which the map can be
p-periodic, reducing the problem of finding the parameters for which the
periodic cases appear to simple computations. We apply our results to several
two and three dimensional classes of polynomial or rational maps. In particular
we find the global periodic cases for several Lyness type recurrences.Comment: 25 page
On the global dynamics of periodic triangular maps
This paper is an extension of an earlier paper that dealt with global
dynamics in autonomous triangular maps. In the current paper, we extend the
results on global dynamics of autonomous triangular maps to periodic
non-autonomous triangular maps. We show that, under certain conditions, the
orbit of every point in a periodic non-autonomous triangular map converges to a
fixed point (respectively, periodic orbit of period ) if and only if there
is no periodic orbit of prime period two (respectively, periodic orbits of
prime period greater than ).Comment: 17 pages, 2 figure
Dynamics of a rational system of difference equations in the plane
We consider a rational system of first order difference equations in the
plane with four parameters such that all fractions have a common denominator.
We study, for the different values of the parameters, the global and local
properties of the system. In particular, we discuss the boundedness and the
asymptotic behavior of the solutions, the existence of periodic solutions and
the stability of equilibria
Monotone flows with dense periodic orbits
The main result is Theorem 1: A flow on a connected open set X ⊂ Rd is globally periodic provided (i) periodic points are dense in X, and (ii) at all positive times the flow preserves the partial order defined by a closed convex cone that has nonempty interior and contains no straight line. The proof uses the analog for homeomorphisms due to B. Lemmens et al. [27], a classical theorem of D. Montgomery [31, 32], and a sufficient condition for the nonstationary periodic points in a closed order interval to have rationally related periods (Theorem 2)
- …
