5 research outputs found

    A case study of hardware and software synthesis in ForSyDe

    Get PDF

    Rendre les algorithmes locaux sans attente : le cas de la coloration de l'anneau

    Get PDF
    International audienceWhen considering distributed computing, reliable message-passing synchronous systems on the one side, and asynchronous failure-prone shared-memory systems on the other side, remain two quite independently studied ends of the relia-bility/asynchrony spectrum. The concept of locality of a computation is central to the first one, while the concept of wait-freedom is central to the second one. The paper proposes a new DECOUPLED model in an attempt to reconcile these two worlds. It consists of a synchronous and reliable communication graph of n nodes, and on top a set of asynchronous crash-prone processes, each attached to a communication node. To illustrate the DECOUPLED model, the paper presents an asynchronous 3-coloring algorithm for the processes of a ring. From the processes point of view, the This article is part Theory Comput Syst algorithm is wait-free. From a locality point of view, each process uses information only from processes at distance O(log * n) from it. This local wait-free algorithm is based on an extension of the classical Cole and Vishkin's vertex coloring algorithm in which the processes are not required to start simultaneously

    Globally Asynchronous Locally Synchronous Architecture for Large High-performance ASICs

    No full text
    Clock nets are the major source of power consumption in large, high-performance ASICs and a design bottleneck when it comes to tolerable clock skew. A way to obviate the global clock net is to partition the design into large synchronous blocks each having its own clock. Data with other blocks is exchanged asynchronously using handshake signals. Adopting such a strategy requires a methodology that supports: 1) a partitioning method dividing a design into the number of synchronous blocks such that the gain due to global clock net removal exceeds the communication overhead and 2) synthesis of handshake protocols to implement the data transfer between synchronous blocks. We describe this methodology and present results of applying it to a realistic design done in 0.25 micron, ranging in operating frequencies from 20 MHz to 1 GHz. The results show that the net power savings compared to fully synchronous designs are on an average about 30

    The MANGO clockless network-on-chip: Concepts and implementation

    Get PDF

    Throughput-Centric Wave-Pipelined Interconnect Circuits for Gigascale Integration

    Get PDF
    The central thesis of this research is that VLSI interconnect design strategies should shift from using global wires that can support only a single binary transition during the latency of the line to global wires that can sustain multiple bits traveling simultaneously along the length of the line. It is shown in this thesis that such throughput-centric multibit transmission can be achieved by wave-pipelining the interconnects using repeaters. A holistic analysis of wave-pipelined interconnect circuits, along with the full-custom optimization of these circuits, is performed in this research. With the help of models and methodologies developed in this thesis, the design rules for repeater insertion are crafted to simultaneously optimize performance, power, and area of VLSI global interconnect networks through a simultaneous application of voltage scaling and wire sizing. A qualitative analysis of latency, throughput, signal integrity, power dissipation, and area is performed that compares the results of design optimizations in this work to those of conventional global interconnect circuits. The objective of this thesis is to study the circuit- and system-level opportunities of voltage scaling, wire sizing, and repeater insertion in wave-pipelined global interconnect networks that are implemented in deep submicron technologies.Ph.D.Committee Chair: Davis, Jeffrey; Committee Member: Kohl, Paul; Committee Member: Meindl, James; Committee Member: Swaminathan, Madhavan; Committee Member: Wills, D. Scot
    corecore