17 research outputs found

    Globally Optimal Cell Tracking using Integer Programming

    Get PDF
    We propose a novel approach to automatically tracking cell populations in time-lapse images. To account for cell occlusions and overlaps, we introduce a robust method that generates an over-complete set of competing detection hypotheses. We then perform detection and tracking simultaneously on these hypotheses by solving to optimality an integer program with only one type of flow variables. This eliminates the need for heuristics to handle missed detections due to occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques.Comment: Engin T\"uretken and Xinchao Wang contributed equally to this wor

    Moving Target Positioning Based on a Distributed Camera Network

    Get PDF
    We propose a systematic framework for moving target positioning based on a distributed camera network. In the proposed framework, low-cost static cameras are deployed to cover a large region, moving targets are detected and then tracked using corresponding algorithms, target positions are estimated by making use of the geometrical relationships among those cameras after calibrating those cameras, and finally, for each target, its position estimates obtained from different cameras are unified into the world coordinate system. This system can function as complementary positioning information sources to realize moving target positioning in indoor or outdoor environments when global navigation satellite system (GNSS) signals are unavailable. The experiments are carried out using practical indoor and outdoor environment data, and the experimental results show that the systematic framework and inclusive algorithms are both effective and efficient

    Identity Retention of Multiple Objects under Extreme Occlusion Scenarios using Feature Descriptors

    Get PDF
    Identity assignment and retention needs multiple object detection and tracking. It plays a vital role in behavior analysis and gait recognition. The objective of Multiple Object Tracking (MOT) is to detect, track and retain identities from an image sequence. An occlusion is a major resistance in identity retention. It is a challenging task to handle occlusion while tracking varying number of person in the complex scene using a monocular camera. In MOT, occlusion remains a challenging task in real world applications. This paper uses Gaussian Mixture Model (GMM) and Hungarian Assignment (HA) for person detection and tracking. We propose an identity retention algorithm using Rotation Scale and Translation (RST) invariant feature descriptors. In addition, a segmentation based optimum demerge handling algorithm is proposed to retain proper identities under occlusion. The proposed approach is evaluated on a standard surveillance dataset sequences and it achieves 97 % object detection accuracy and 85% tracking accuracy for PETS-S2.L1 sequence and 69.7% accuracy as well as 72.3% precision for Town Centre Sequence

    Conditional Random Fields for Multi-Camera Object Detection

    Get PDF
    We formulate a model for multi-class object detection in a multi-camera environment. From our knowledge, this is the first time that this problem is addressed taken into account different object classes simultaneously. Given several images of the scene taken from different angles, our system estimates the ground plane location of the objects from the output of several object detectors applied at each viewpoint. We cast the problem as an energy minimization modeled with a Conditional Random Field (CRF). Instead of predicting the presence of an object at each image location independently, we simultaneously predict the labeling of the entire scene. Our CRF is able to take into account occlusions between objects and contextual constraints among them. We propose an effective iterative strategy that renders tractable the underlying optimization problem, and learn the parameters of the model with the max-margin paradigm. We evaluate the performance of our model on several challenging multi-camera pedestrian detection datasets namely PETS 2009 and EPFL terrace sequence. We also introduce a new dataset in which multiple classes of objects appear simultaneously in the scene. It is here where we show that our method effectively handles occlusions in the multi-class case

    Detecting and Tracking Cells using Network Flow Programming

    Get PDF
    We propose a novel approach to automatically detecting and tracking cell populations in time-lapse images. Unlike earlier ones that rely on linking a predetermined and potentially under-complete set of detections, we generate an overcomplete set of competing detection hypotheses. We then perform detection and tracking simultaneously by solving an integer program to find an optimal and consistent subset. This eliminates the need for heuristics to handle missed detections due to occlusions and complex morphology. We demonstrate the effectiveness of our approach on a range of challenging image sequences consisting of clumped cells and show that it outperforms state-of-the-art techniques
    corecore