3,440 research outputs found

    Limitations and tradeoffs in synchronization of large-scale networks with uncertain links

    Get PDF
    We study synchronization in scalar nonlinear systems connected over a linear network with stochastic uncertainty in their interactions. We provide a sufficient condition for the synchronization of such network systems expressed in terms of the parameters of the nonlinear scalar dynamics, the second and largest eigenvalues of the mean interconnection Laplacian, and the variance of the stochastic uncertainty. The sufficient condition is independent of network size thereby making it attractive for verification of synchronization in a large size network. The main contribution of this paper is to provide analytical characterization for the interplay of roles played by the internal dynamics of the nonlinear system, network topology, and uncertainty statistics in network synchronization. We show there exist important tradeoffs between these various network parameters necessary to achieve synchronization. We show for nearest neighbor networks with stochastic uncertainty in interactions there exists an optimal number of neighbors with maximum margin for synchronization. This proves in the presence of interaction uncertainty, too many connections among network components is just as harmful for synchronization as the lack of connection. We provide an analytical formula for the optimal gain required to achieve maximum synchronization margin thereby allowing us to compare various complex network topology for their synchronization property

    Interacting Turing-Hopf Instabilities Drive Symmetry-Breaking Transitions in a Mean-Field Model of the Cortex: A Mechanism for the Slow Oscillation

    Get PDF
    Electrical recordings of brain activity during the transition from wake to anesthetic coma show temporal and spectral alterations that are correlated with gross changes in the underlying brain state. Entry into anesthetic unconsciousness is signposted by the emergence of large, slow oscillations of electrical activity (≲1  Hz) similar to the slow waves observed in natural sleep. Here we present a two-dimensional mean-field model of the cortex in which slow spatiotemporal oscillations arise spontaneously through a Turing (spatial) symmetry-breaking bifurcation that is modulated by a Hopf (temporal) instability. In our model, populations of neurons are densely interlinked by chemical synapses, and by interneuronal gap junctions represented as an inhibitory diffusive coupling. To demonstrate cortical behavior over a wide range of distinct brain states, we explore model dynamics in the vicinity of a general-anesthetic-induced transition from “wake” to “coma.” In this region, the system is poised at a codimension-2 point where competing Turing and Hopf instabilities coexist. We model anesthesia as a moderate reduction in inhibitory diffusion, paired with an increase in inhibitory postsynaptic response, producing a coma state that is characterized by emergent low-frequency oscillations whose dynamics is chaotic in time and space. The effect of long-range axonal white-matter connectivity is probed with the inclusion of a single idealized point-to-point connection. We find that the additional excitation from the long-range connection can provoke seizurelike bursts of cortical activity when inhibitory diffusion is weak, but has little impact on an active cortex. Our proposed dynamic mechanism for the origin of anesthetic slow waves complements—and contrasts with—conventional explanations that require cyclic modulation of ion-channel conductances. We postulate that a similar bifurcation mechanism might underpin the slow waves of natural sleep and comment on the possible consequences of chaotic dynamics for memory processing and learning

    Delayed Dynamical Systems: Networks, Chimeras and Reservoir Computing

    Full text link
    We present a systematic approach to reveal the correspondence between time delay dynamics and networks of coupled oscillators. After early demonstrations of the usefulness of spatio-temporal representations of time-delay system dynamics, extensive research on optoelectronic feedback loops has revealed their immense potential for realizing complex system dynamics such as chimeras in rings of coupled oscillators and applications to reservoir computing. Delayed dynamical systems have been enriched in recent years through the application of digital signal processing techniques. Very recently, we have showed that one can significantly extend the capabilities and implement networks with arbitrary topologies through the use of field programmable gate arrays (FPGAs). This architecture allows the design of appropriate filters and multiple time delays which greatly extend the possibilities for exploring synchronization patterns in arbitrary topological networks. This has enabled us to explore complex dynamics on networks with nodes that can be perfectly identical, introduce parameter heterogeneities and multiple time delays, as well as change network topologies to control the formation and evolution of patterns of synchrony

    On global mechanisms of synchronization in networks of coupled chaotic circuits and the role of the voltage-type coupling

    Get PDF
    A model for synchronization of coupled Nakano’s chaotic circuits is studied. The Nakano circuit consists of a simple RLC circuit with a switch voltage-depending reset rule which generates a discontinuous dynamics. Thus, the model that we study is a network of identical spiking oscillators with integrate-and-fire dynamics. The coupling between oscillators is linear, but the network is subject to a common regime of reset depending on the global state of the oscillator population. This constitutes the simplest way of build pulse-coupled networks with arbitrary topology for this type of oscillators, and it allows the emergence of synchronous states and different reset regimes. The main result is that under certain hypothesis over the weight matrix (that represents the network topology) the different reset regimes match and the formalism of the master stability function can be generalized in order to study the stability of the synchronous state and the discontinuous dynamic of the network. Also, the low dimensionality of the Nakano’s circuit allows to implement the saltation-matrix method and numerical simulations can be performed in order to analyze the role of the coupling mode in the synchronization regime of the network and the influence of the voltage-type variables.Fil: Chialva, Ulises. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Matemática; ArgentinaFil: Reartes, Walter. Universidad Nacional del Sur. Departamento de Matemática; Argentin

    Mammalian Brain As a Network of Networks

    Get PDF
    Acknowledgements AZ, SG and AL acknowledge support from the Russian Science Foundation (16-12-00077). Authors thank T. Kuznetsova for Fig. 6.Peer reviewedPublisher PD
    corecore