7 research outputs found

    Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function

    Get PDF
    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications---for which proper functionality depends sensitively on the extent of synchronization---there remains a lack of understanding for how systems evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system's ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments.Comment: 25 pages, 6 figure

    Synchronization of Heterogeneous Oscillators Under Network Modifications: Perturbation and Optimization of the Synchrony Alignment Function

    Get PDF
    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications—for which proper functionality depends sensitively on the extent of synchronization—there remains a lack of understanding for how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments

    Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function

    Get PDF
    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications---for which proper functionality depends sensitively on the extent of synchronization---there remains a lack of understanding for how systems evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system\u27s ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments

    Global Swing Instability in the New England Power Grid Model

    Get PDF
    2009 American Control Conference. Hyatt Regency Riverfront, St. Louis, MO, USA. June 10-12, 2009.Global swing instability is an undesirable and emergent phenomenon of synchronous machines in a power grid, implying that most of the machines in the system simultaneously lose synchronism with the rest of the grid after being subjected to a finite and local disturbance. Recently we reported that global instability occurred in the classical model of swing dynamics in the New England power grid model. This paper analyzes the global instability in the New England power grid model. We show that the proper orthonormal decomposition and the Galerkin method for model reduction can determine a dynamical mechanism responsible for the global instability. These methods applied in this paper make it possible to find the occurrence of global instability in real power grids
    corecore