4,566 research outputs found

    Bayesian Updating, Model Class Selection and Robust Stochastic Predictions of Structural Response

    Get PDF
    A fundamental issue when predicting structural response by using mathematical models is how to treat both modeling and excitation uncertainty. A general framework for this is presented which uses probability as a multi-valued conditional logic for quantitative plausible reasoning in the presence of uncertainty due to incomplete information. The fundamental probability models that represent the structure’s uncertain behavior are specified by the choice of a stochastic system model class: a set of input-output probability models for the structure and a prior probability distribution over this set that quantifies the relative plausibility of each model. A model class can be constructed from a parameterized deterministic structural model by stochastic embedding utilizing Jaynes’ Principle of Maximum Information Entropy. Robust predictive analyses use the entire model class with the probabilistic predictions of each model being weighted by its prior probability, or if structural response data is available, by its posterior probability from Bayes’ Theorem for the model class. Additional robustness to modeling uncertainty comes from combining the robust predictions of each model class in a set of competing candidates weighted by the prior or posterior probability of the model class, the latter being computed from Bayes’ Theorem. This higherlevel application of Bayes’ Theorem automatically applies a quantitative Ockham razor that penalizes the data-fit of more complex model classes that extract more information from the data. Robust predictive analyses involve integrals over highdimensional spaces that usually must be evaluated numerically. Published applications have used Laplace's method of asymptotic approximation or Markov Chain Monte Carlo algorithms

    Dynamic structural health monitoring for concrete gravity dams based on the Bayesian inference

    Get PDF
    The preservation of concrete dams is a key issue for researchers and practitioners in dam engineering because of the important role played by these infrastructures in the sustainability of our society. Since most of existing concrete dams were designed without considering their dynamic behaviour, monitoring their structural health is fundamental in achieving proper safety levels. Structural Health Monitoring systems based on ambient vibrations are thus crucial. However, the high computational burden related to numerical models and the numerous uncertainties affecting the results have so far prevented structural health monitoring systems for concrete dams from being developed. This study presents a framework for the dynamic structural health monitoring of concrete gravity dams in the Bayesian setting. The proposed approach has a relatively low computational burden, and detects damage and reduces uncertainties in predicting the structural behaviour of dams, thus improving the reliability of the structural health monitoring system itself. The application of the proposed procedure to an Italian concrete gravity dam demonstrates its feasibility in real cases

    Real-time Loss Estimation for Instrumented Buildings

    Get PDF
    Motivation. A growing number of buildings have been instrumented to measure and record earthquake motions and to transmit these records to seismic-network data centers to be archived and disseminated for research purposes. At the same time, sensors are growing smaller, less expensive to install, and capable of sensing and transmitting other environmental parameters in addition to acceleration. Finally, recently developed performance-based earthquake engineering methodologies employ structural-response information to estimate probabilistic repair costs, repair durations, and other metrics of seismic performance. The opportunity presents itself therefore to combine these developments into the capability to estimate automatically in near-real-time the probabilistic seismic performance of an instrumented building, shortly after the cessation of strong motion. We refer to this opportunity as (near-) real-time loss estimation (RTLE). Methodology. This report presents a methodology for RTLE for instrumented buildings. Seismic performance is to be measured in terms of probabilistic repair cost, precise location of likely physical damage, operability, and life-safety. The methodology uses the instrument recordings and a Bayesian state-estimation algorithm called a particle filter to estimate the probabilistic structural response of the system, in terms of member forces and deformations. The structural response estimate is then used as input to component fragility functions to estimate the probabilistic damage state of structural and nonstructural components. The probabilistic damage state can be used to direct structural engineers to likely locations of physical damage, even if they are concealed behind architectural finishes. The damage state is used with construction cost-estimation principles to estimate probabilistic repair cost. It is also used as input to a quantified, fuzzy-set version of the FEMA-356 performance-level descriptions to estimate probabilistic safety and operability levels. CUREE demonstration building. The procedure for estimating damage locations, repair costs, and post-earthquake safety and operability is illustrated in parallel demonstrations by CUREE and Kajima research teams. The CUREE demonstration is performed using a real 1960s-era, 7-story, nonductile reinforced-concrete moment-frame building located in Van Nuys, California. The building is instrumented with 16 channels at five levels: ground level, floors 2, 3, 6, and the roof. We used the records obtained after the 1994 Northridge earthquake to hindcast performance in that earthquake. The building is analyzed in its condition prior to the 1994 Northridge Earthquake. It is found that, while hindcasting of the overall system performance level was excellent, prediction of detailed damage locations was poor, implying that either actual conditions differed substantially from those shown on the structural drawings, or inappropriate fragility functions were employed, or both. We also found that Bayesian updating of the structural model using observed structural response above the base of the building adds little information to the performance prediction. The reason is probably that Real-Time Loss Estimation for Instrumented Buildings ii structural uncertainties have only secondary effect on performance uncertainty, compared with the uncertainty in assembly damageability as quantified by their fragility functions. The implication is that real-time loss estimation is not sensitive to structural uncertainties (saving costly multiple simulations of structural response), and that real-time loss estimation does not benefit significantly from installing measuring instruments other than those at the base of the building. Kajima demonstration building. The Kajima demonstration is performed using a real 1960s-era office building in Kobe, Japan. The building, a 7-story reinforced-concrete shearwall building, was not instrumented in the 1995 Kobe earthquake, so instrument recordings are simulated. The building is analyzed in its condition prior to the earthquake. It is found that, while hindcasting of the overall repair cost was excellent, prediction of detailed damage locations was poor, again implying either that as-built conditions differ substantially from those shown on structural drawings, or that inappropriate fragility functions were used, or both. We find that the parameters of the detailed particle filter needed significant tuning, which would be impractical in actual application. Work is needed to prescribe values of these parameters in general. Opportunities for implementation and further research. Because much of the cost of applying this RTLE algorithm results from the cost of instrumentation and the effort of setting up a structural model, the readiest application would be to instrumented buildings whose structural models are already available, and to apply the methodology to important facilities. It would be useful to study under what conditions RTLE would be economically justified. Two other interesting possibilities for further study are (1) to update performance using readily observable damage; and (2) to quantify the value of information for expensive inspections, e.g., if one inspects a connection with a modeled 50% failure probability and finds that the connect is undamaged, is it necessary to examine one with 10% failure probability

    Integration of stochastic models for long-term eruption forecasting into a Bayesian event tree scheme: a basis method to estimate the probability of volcanic unrest

    Get PDF
    Eruption forecasting refers, in general, to the assessment of the occurrence probability of a given erup- tive event, whereas volcanic hazards are normally associated with the analysis of superficial and evident phenomena that usually accompany eruptions (e.g., lava, pyroclastic flows, tephra fall, lahars, etc.). Nevertheless, several hazards of volcanic origin may occur in noneruptive phases dur- ing unrest episodes. Among others, remarkable examples are gas emissions, phreatic explosions, ground deforma- tion, and seismic swarms. Many of such events may lead to significant damages, and for this reason, the “risk” associ- ated to unrest episodes could not be negligible with respect to eruption-related phenomena. Our main objective in this paper is to provide a quantitative framework to calculate probabilities of volcanic unrest. The mathematical frame- work proposed is based on the integration of stochastic mod- els based on the analysis of eruption occurrence catalogs into a Bayesian event tree scheme for eruption forecast- ing and volcanic hazard assessment. Indeed, such models are based on long-term eruption catalogs and in many cases allow a more consistent analysis of long-term tem- poral modulations of volcanic activity. The main result of this approach is twofold: first, it allows to make inferences about the probability of volcanic unrest; second, it allows to project the results of stochastic modeling of the eruptive history of a volcano toward the probabilistic assessment of volcanic hazards. To illustrate the performance of the pro- posed approach, we apply it to determine probabilities of unrest at Miyakejima volcano, Japan
    • 

    corecore