13,188 research outputs found

    H2 Optimal Coordination of Homogeneous Agents Subject to Limited Information Exchange

    Full text link
    Controllers with a diagonal-plus-low-rank structure constitute a scalable class of controllers for multi-agent systems. Previous research has shown that diagonal-plus-low-rank control laws appear as the optimal solution to a class of multi-agent H2 coordination problems, which arise in the control of wind farms. In this paper we show that this result extends to the case where the information exchange between agents is subject to limitations. We also show that the computational effort required to obtain the optimal controller is independent of the number of agents and provide analytical expressions that quantify the usefulness of information exchange

    Distributed Control with Low-Rank Coordination

    Full text link
    A common approach to distributed control design is to impose sparsity constraints on the controller structure. Such constraints, however, may greatly complicate the control design procedure. This paper puts forward an alternative structure, which is not sparse yet might nevertheless be well suited for distributed control purposes. The structure appears as the optimal solution to a class of coordination problems arising in multi-agent applications. The controller comprises a diagonal (decentralized) part, complemented by a rank-one coordination term. Although this term relies on information about all subsystems, its implementation only requires a simple averaging operation

    Stabilization of Networked Control Systems with Sparse Observer-Controller Networks

    Full text link
    In this paper we provide a set of stability conditions for linear time-invariant networked control systems with arbitrary topology, using a Lyapunov direct approach. We then use these stability conditions to provide a novel low-complexity algorithm for the design of a sparse observer-based control network. We employ distributed observers by employing the output of other nodes to improve the stability of each observer dynamics. To avoid unbounded growth of controller and observer gains, we impose bounds on their norms. The effects of relaxation of these bounds is discussed when trying to find the complete decentralization conditions

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107
    • …
    corecore