4 research outputs found

    Finite-time stabilization of homogeneous non-Lipschitz systems

    Get PDF
    This paper focuses on the problem of finite-time stabilization of homogeneous, non-Lipschitz systems with dilations. A key contribution of this paper is the design of a virtual recursive Holder, non-Lipschitz state feedback, which renders the non-Lipschitz systems in the special case dominated by a lower-triangular nonlinear system finite-time stable. The proof is based on a recursive design algorithm developed recently to construct the virtual Holder continuous, finite-time stabilizer as well as a C1 positive definite and proper Lyapunov function that guarantees finite-time stability of the non-Lipschitz nonlinear systems

    Global Finite-Time Stabilization for a Class of Uncertain High-Order Nonlinear Systems

    Get PDF
    This paper addresses the problem of global finite-time stabilization by state feedback for a class of high-order nonlinear systems under weaker condition. By using the methods of adding a power integrator, a continuous state feedback controller is successfully constructed to guarantee the global finite-time stability of the resulting closed-loop system. A simulation example is provided to illustrate the effectiveness of the proposed approach

    Global Finite-Time Output Feedback Stabilization for a Class of Uncertain Nonholonomic Systems

    Get PDF
    This paper investigates the problem of global finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. By using backstepping recursive technique and the homogeneous domination approach, a constructive design procedure for output feedback control is given. Together with a novel switching control strategy, the designed controller renders that the states of closed-loop system are regulated to zero in a finite time. A simulation example is provided to illustrate the effectiveness of the proposed approach
    corecore