63 research outputs found

    New criteria on global asymptotic synchronization of Duffing-type oscillator system

    Get PDF
    In this paper, we are concerned with global asymptotic synchronization of Duffing-type oscillator system. Without using matrix measure theory, graph theory and LMI method, which are recently widely applied to investigating global exponential/asymptotic synchronization for dynamical systems and complex networks, four novel sufficient conditions on global asymptotic synchronization for above system are acquired on the basis of constant variation method, integral factor method and integral inequality skills.&nbsp

    Fixed-time control of delayed neural networks with impulsive perturbations

    Get PDF
    This paper is concerned with the fixed-time stability of delayed neural networks with impulsive perturbations. By means of inequality analysis technique and Lyapunov function method, some novel fixed-time stability criteria for the addressed neural networks are derived in terms of linear matrix inequalities (LMIs). The settling time can be estimated without depending on any initial conditions but only on the designed controllers. In addition, two different controllers are designed for the impulsive delayed neural networks. Moreover, each controller involves three parts, in which each part has different role in the stabilization of the addressed neural networks. Finally, two numerical examples are provided to illustrate the effectiveness of the theoretical analysis

    Recent Advances and Applications of Fractional-Order Neural Networks

    Get PDF
    This paper focuses on the growth, development, and future of various forms of fractional-order neural networks. Multiple advances in structure, learning algorithms, and methods have been critically investigated and summarized. This also includes the recent trends in the dynamics of various fractional-order neural networks. The multiple forms of fractional-order neural networks considered in this study are Hopfield, cellular, memristive, complex, and quaternion-valued based networks. Further, the application of fractional-order neural networks in various computational fields such as system identification, control, optimization, and stability have been critically analyzed and discussed

    Controlling and Synchronizing Combined Effect of Chaos Generated in Generalized Lotka-Volterra Three Species Biological Model using Active Control Design

    Get PDF
    In this work, we study hybrid projective combination synchronization scheme among identical chaotic generalized Lotka-Volterra three species biological systems using active control design. We consider here generalized Lotka-Volterra system containing two predators and one prey population existing in nature. An active control design is investigated which is essentially based on Lyapunov stability theory. The considered technique derives the global asymptotic stability using hybrid projective combination synchronization technique. In addition, the presented simulation outcomes and graphical results illustrate the validation of our proposed scheme. Prominently, both the analytical and computational results agree excellently. Comparisons versus others strategies exhibiting our proposed technique in generalized Lotka-Volterra system achieved asymptotic stability in a lesser time

    Mittag–Leffler synchronization for impulsive fractional-order bidirectional associative memory neural networks via optimal linear feedback control

    Get PDF
    In this paper, we are concerned with the synchronization scheme for fractional-order bidirectional associative memory (BAM) neural networks, where both synaptic transmission delay and impulsive effect are considered. By constructing Lyapunov functional, sufficient conditions are established to ensure the Mittag–Leffler synchronization. Based on Pontryagin’s maximum principle with delay, time-dependent control gains are obtained, which minimize the accumulative errors within the limitation of actuator saturation during the Mittag–Leffler synchronization. Numerical simulations are carried out to illustrate the feasibility and effectiveness of theoretical results with the help of the modified predictor-corrector algorithm and the forward-backward sweep method

    Macroscopic behavior of populations of quadratic integrate-and-fire neurons subject to non-Gaussian white noise

    Full text link
    We study microscopic dynamics of populations of quadratic integrate-and-fire neurons subject to non-Gaussian noises; we argue that these noises must be alpha-stable whenever they are delta-correlated (white). For the case of additive-in-voltage noise, we derive the governing equation of the dynamics of the characteristic function of the membrane voltage distribution and construct a linear-in-noise perturbation theory. Specifically for the recurrent network with global synaptic coupling, we theoretically calculate the observables: population-mean membrane voltage and firing rate. The theoretical results are underpinned by the results of numerical simulation for homogeneous and heterogeneous populations. The possibility of the generalization of the pseudocumulant approach to the case of a fractional α\alpha is examined for both irrational and fractional rational α\alpha. This examination seemingly suggests the pseudocumulant approach or its modifications to be employable only for the integer values of α=1\alpha=1 (Cauchy noise) and 2 (Gaussian noise) within the physically meaningful range (0;2]. Remarkably, the analysis for fractional α\alpha indirectly revealed that, for the Gaussian noise, the minimal asymptotically rigorous model reduction must involve three pseudocumulants and the two-pseudocumulant model reduction is an artificial approximation. This explains a surprising gain of accuracy for the three-pseudocumulant models as compared to the the two-pseudocumulant ones reported in the literature.Comment: 16 pages, 4 figure

    Synchronization of heterogeneous oscillators under network modifications: Perturbation and optimization of the synchrony alignment function

    Get PDF
    Synchronization is central to many complex systems in engineering physics (e.g., the power-grid, Josephson junction circuits, and electro-chemical oscillators) and biology (e.g., neuronal, circadian, and cardiac rhythms). Despite these widespread applications---for which proper functionality depends sensitively on the extent of synchronization---there remains a lack of understanding for how systems evolve and adapt to enhance or inhibit synchronization. We study how network modifications affect the synchronization properties of network-coupled dynamical systems that have heterogeneous node dynamics (e.g., phase oscillators with non-identical frequencies), which is often the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that quantifies the interplay between heterogeneity of the network and of the oscillators and provides an objective measure for a system's ability to synchronize. We conduct a spectral perturbation analysis of the SAF for structural network modifications including the addition and removal of edges, which subsequently ranks the edges according to their importance to synchronization. Based on this analysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to maximize phase synchronization via network modifications. We support these and other results with numerical experiments.Comment: 25 pages, 6 figure

    New Methods of Finite-Time Synchronization for a Class of Fractional-Order Delayed Neural Networks

    Get PDF
    Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order α, 0<α≤1/2 and 1/2<α<1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality skills, two sufficient conditions are considered to ensure synchronization of fractional-order delayed neural networks in a finite-time interval. Numerical example is given to verify the feasibility of the theoretical results
    • …
    corecore