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Finite-time synchronization for a class of fractional-order delayed neural networks with fractional order 𝛼, 0 < 𝛼 ≤ 1/2 and1/2 < 𝛼 < 1, is investigated in this paper. Through the use of Hölder inequality, generalized Bernoulli inequality, and inequality
skills, two sufficient conditions are considered to ensure synchronization of fractional-order delayed neural networks in a finite-
time interval. Numerical example is given to verify the feasibility of the theoretical results.

1. Introduction

Since the 17th century, the theory of fractional calculus was
mainly focused on the pure theoretical field of mathematics
[1, 2]. In the past two decades, it has been found that the
dynamical behaviors of many systems can be described by
the fractional calculus. Furthermore, fractional-ordermodels
can help exhibit the dynamical behaviors of systems. In fact,
many physical systems show fractional dynamical behaviors
because of special properties [3–11].

Fractional-order neural networks have attracted great
attention due to their potential properties of memory and
hereditary. Particularly, the dynamical analysis of fractional-
order neural networks can be used to describe the dynamical
characteristics of neural networks. For instance, synchro-
nization is considered as an important topic, as reported in
[12, 13], where chaotic synchronization of fractional-order
neural networks was proposed. Mittag-Leffler stability and
synchronization of memristor-based fractional-order neural
networks were discussed in [14]. In addition, the results
for stability analysis and synchronization of fractional-order
networks were presented in [15–23].

However, the majority of the results were demon-
strated to ensure the asymptotic stability of error systems.

Asymptotic synchronization indicates that the trajectories of
the slave system reach to the trajectories of the master system
over the infinite horizon. In fact, it is more desirable that
the networks can reach synchronization in a finite-time in
physical and engineering systems, achieving an optimality in
convergence time.Thus, it is necessary to study the finite-time
synchronization of neural networks. In order to achieve faster
synchronization in control systems, an effective finite-time
control method is utilized. Some important results on finite-
time synchronization were demonstrated on integer-order
systems [24–28]. Note that time delay [29–31] occurs inmany
physical and engineering systems. So it is natural to study
fractional-order systems with delays. Till now few results are
obtained with the consideration of the finite-time stability
and synchronization of fractional-order neural networkswith
time delays [32, 33]. For instance, finite-time synchronization
of fractional-order memristor-based neural networks with
time delays was considered by using Laplace transform, such
as the generalized Gronwall inequality and Mittag-Leffler
functions, in [33].

Motivated by the above discussion, the main goal of
this paper is to adopt new methods and obtain some new
sufficient conditions that can assist master-slave systems to
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achieve the finite-time synchronization of fractional delayed
neural networks with orders 0 < 𝛼 ≤ 1/2 and 1/2 < 𝛼 < 1.

Throughout the paper, denote ‖𝑥‖ = ∑𝑛𝑖=1 |𝑥𝑖| (𝑖 =1, . . . , 𝑛) and ‖𝐴‖ = max𝑗∑𝑛𝑖=1 |𝑎𝑖𝑗| (𝑖, 𝑗 = 1, . . . , 𝑛) which are
the Euclidean vector norm and thematrix norm, respectively;𝑥𝑖 and 𝑎𝑖𝑗 are the element of the vector 𝑥 and the matrix 𝐴.
2. Preliminaries and Model Description

There are some definitions of the fractional-order integrals
and derivatives. Due to the advantages of the Caputo frac-
tional derivative, the definition of Caputo derivative is used
in this paper.

Definition 1 (see [1]). The fractional integral with noninteger
order 𝛼 > 0 of a function 𝑥(𝑡) is defined by

𝐷−𝛼𝑥 (𝑡) = 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝜏)𝛼−1 𝑥 (𝜏) 𝑑𝜏, (1)

where 𝑡 ≥ 0, Γ(⋅) is the Gamma function, and Γ(𝑠) =∫∞
0

𝑡𝑠−1𝑒−𝑡𝑑𝑡.
Definition 2 (see [1]). The Caputo derivative of fractional
order 𝛼 of a function 𝑥(𝑡) is defined by

𝐷𝛼𝑥 (𝑡) = 1Γ (𝑛 − 𝛼) ∫
𝑡

0
(𝑡 − 𝜏)𝑛−𝛼−1 𝑥(𝑛) (𝜏) 𝑑𝜏, (2)

where 𝑡 ≥ 0; 𝑛 − 1 < 𝛼 < 𝑛 ∈ 𝑍+.
In this paper, we consider a class of fractional-order

neural networks with time delay as master system, which is
described by

𝐷𝛼𝑥𝑖 (𝑡) = −𝑐𝑖𝑥𝑖 (𝑡) + 𝑛∑
𝑗=1

𝑎𝑖𝑗 (𝑡) 𝑓𝑗 (𝑥𝑗 (𝑡))

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗 (𝑡) 𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏)) + 𝐼𝑖,
(3)

or equivalently

𝐷𝛼𝑥 (𝑡) = −𝐶𝑥 (𝑡) + 𝐴 (𝑡) 𝑓 (𝑥 (𝑡)) + 𝐵 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏))
+ 𝐼, (4)

for 𝑡 ∈ 𝐽 = [0, 𝑇] (𝑇 > 0), where 0 < 𝛼 < 1, 𝑖 = 1, 2, . . . , 𝑛, 𝑛
is the number of units in a neural network, 𝑥𝑖(𝑡) corresponds
to the state of the 𝑖th unit at time 𝑡 and denotes 𝑥(𝑡) =(𝑥1(𝑡), . . . , 𝑥𝑛(𝑡))𝑇 ∈ 𝑅𝑛, and 𝐶 = diag(𝑐𝑖 > 0) is the self-
regulating parameter of the neurons. 𝐼 = (𝐼1, 𝐼2, . . . , 𝐼𝑛)𝑇
represents the external input; 𝐴(𝑡) = (𝑎𝑖𝑗(𝑡))𝑛×𝑛 and 𝐵(𝑡) =(𝑏𝑖𝑗(𝑡))𝑛×𝑛 are the connective weights matrix in the presence
and absence of delay, respectively. Functions 𝑓𝑗(𝑥𝑗(𝑡)) and𝑔𝑗(𝑥𝑗(𝑡)) denote the output of the 𝑗th unit at time 𝑡 and𝑡 − 𝜏, respectively, where 𝜏 > 0 is the transmission delay
and denotes 𝑓(𝑥(𝑡)) = (𝑓1(𝑥1(𝑡)), . . . , 𝑓𝑛(𝑥𝑛(𝑡)))𝑇, 𝑔(𝑥(𝑡)) =(𝑔1(𝑥1(𝑡)), . . . , 𝑔𝑛(𝑥𝑛(𝑡)))𝑇.

The initial conditions associated with system (1) are of
the form 𝑥𝑖(𝑡) = 𝜓𝑖(𝑡), 𝑡 ∈ [−𝜏, 0] (𝑖 = 1, . . . , 𝑛), where

𝜓𝑖(𝑡) denotes the real-valued continuous function defined on[−𝜏, 0], with the norm given by ‖𝜓‖ = sup𝑠∈[−𝜏,0]‖𝜓(𝑠)‖.
The slave system is given:

𝐷𝛼𝑦𝑖 (𝑡) = −𝑐𝑖𝑦𝑖 (𝑡) + 𝑛∑
𝑗=1

𝑎𝑖𝑗 (𝑡) 𝑓𝑗 (𝑦𝑗 (𝑡))

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗 (𝑡) 𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏)) − 𝑢𝑖 (𝑡) + 𝐼𝑖,
(5)

or equivalently

𝐷𝛼𝑦 (𝑡) = −𝐶𝑦 (𝑡) + 𝐴 (𝑡) 𝑓 (𝑦 (𝑡)) + 𝐵 (𝑡) 𝑔 (𝑦 (𝑡 − 𝜏))
− 𝑈 (𝑡) + 𝐼, (6)

where 𝑦(𝑡) = (𝑦1(𝑡), . . . , 𝑦𝑛(𝑡))𝑇 ∈ 𝑅𝑛 is the state vector of the
system response and 𝑈(𝑡) = (𝑢1(𝑡), . . . , 𝑢𝑛(𝑡))𝑇 is a suitable
controller. The initial conditions associated with system (3)
are of the form 𝑦𝑖(𝑡) = 𝜋𝑖(𝑡), 𝑡 ∈ [−𝜏, 0] (𝑖 = 1, . . . , 𝑛), where𝜋𝑖(𝑡) denotes the real-valued continuous function defined on[−𝜏, 0], with the norm given by ‖𝜋‖ = sup𝑠∈[−𝜏,0]‖𝜋(𝑠)‖.

For generalities, the following definition, assumptions,
and lemmas are presented.

Definition 3. System (1) is said to be synchronized with
system (3) in a finite-time with respect to {0, 𝛿, 𝜀, 𝑇}, for a
suitable designed controller𝑢𝑖(𝑡), if and only if ‖𝜋(0)−𝜓(0)‖ ≤𝛿, implying ‖𝑒𝑖(𝑡)‖ = ‖𝑦𝑖(𝑡) − 𝑥𝑖(𝑡)‖ < 𝜀, ∀𝑡 ∈ [0, 𝑇], where𝛿, 𝜖, 𝑇 are real positive numbers and 𝛿 < 𝜀.
Assumption 4. The neuron activation functions 𝑓(𝑥), 𝑔(𝑥)
are Lipschitz continuous, with the existence of positive
constants𝐻, 𝐾, such that

𝑓 (𝑢) − 𝑓 (V) ≤ 𝐻 ‖𝑢 − V‖ ,
𝑔 (𝑢) − 𝑔 (V) ≤ 𝐾 ‖𝑢 − V‖ , (7)

for all 𝑢, V ∈ 𝑅𝑛.
Assumption 5. 𝑎𝑖𝑗(𝑡) and 𝑏𝑖𝑗(𝑡) are continuous and bounded
functions defined on 𝑅+, and let 𝐴 = sup𝑡≥0‖𝐴(𝑡)‖, 𝐵 =
sup𝑡≥0‖𝐵(𝑡)‖.
Lemma 6 (Hölder inequality [34]). Assume that 𝑝, 𝑞 > 1 and1/𝑝 + 1/𝑞 = 1, and if |𝑓(⋅)|𝑝, |𝑔(⋅)|𝑞 ∈ 𝐿1(𝐸), then 𝑓(⋅)𝑔(⋅) ∈𝐿1(𝐸) and

∫
𝐸

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥
≤ (∫
𝐸

𝑓 (𝑥)𝑝 𝑑𝑥)1/𝑝 (∫
𝐸

𝑔 (𝑥)𝑞 𝑑𝑥)1/𝑞 ,
(8)

where 𝐿1(𝐸) is the Banach space of all Lebesgue measurable
functions 𝑓 : 𝐸 → 𝑅 with ∫

𝐸
|𝑓(𝑥)|𝑑𝑥 < ∞.
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Let𝑝 = 𝑞 = 2; it reduces to the Cauchy-Schwartz inequality
as follows:

(∫
𝐸

𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥)2

≤ (∫
𝐸

𝑓 (𝑥)2 𝑑𝑥)(∫
𝐸

𝑔 (𝑥)2 𝑑𝑥) .
(9)

Lemma 7 (generalized Bernoulli inequality [34]). If 𝑘 ∈ 𝑅+,𝑥 < 1 and 𝑥 ̸= 0, then, for 0 < 𝑘 < 1, (1 − 𝑥)𝑘 < 1 − 𝑘𝑥, or(1 − (1 − 𝑥)𝑘)−1 < (𝑘𝑥)−1.
Lemma 8 (see [35]). If 𝑥(𝑡) ∈ 𝐶𝑚[0,∞) and𝑚−1 < 𝛼 < 𝑚 ∈𝑧+, then

(1) 𝐷−𝛼𝐷−𝛽𝑥(𝑡) = 𝐷−(𝛼+𝛽)𝑥(𝑡), 𝛼, 𝛽 ≥ 0,
(2) 𝐷𝛼𝐷−𝛽𝑥(𝑡) = 𝑥(𝑡), 𝛼 = 𝛽 ≥ 0,
(3) 𝐷−𝛼𝐷𝛽𝑥(𝑡) = 𝑥(𝑡) − ∑𝑚−1𝑘=0 (𝑡𝑘/𝑘!)𝑥(𝑘)(0), 𝛼 = 𝛽 ≥ 0.

Lemma 9 (see [36]). Let 𝑢(𝑡), 𝜔(𝑡), V(𝑡), and ℎ(𝑡) be nonnega-
tive continuous functions on 𝑅+ and let 𝑟 ≥ 1 be a real number.
If

𝑢 (𝑡) ≤ 𝑢0 (𝑡) + 𝜔 (𝑡) (∫𝑡
0
V (𝑠) 𝑢𝑟 (𝑠) 𝑑𝑠)1/𝑟 , 𝑡 ∈ 𝑅+, (10)

then

∫𝑡
0
V (𝑠) 𝑢𝑟 (𝑠) 𝑑𝑠
≤ [1 − (1 − 𝑊 (𝑡))1/𝑟]−𝑟 ∫𝑡

0
V (𝑠) 𝑢𝑟0 (𝑠)𝑊 (𝑠) 𝑑𝑠,

(11)

where𝑊(𝑡) = exp(− ∫𝑡
0
V(𝑠)𝜔𝑟(𝑠)𝑑𝑠).

3. Finite-Time Synchronization

In this section, master-slave finite-time synchronization of
delayed fractional-order neural networks is discussed. The
aim here is to design a suitable controller that can achieve
the synchronization between the slave system and the master
system.

Let 𝑒𝑖(𝑡) = 𝑦𝑖(𝑡) − 𝑥𝑖(𝑡) (𝑖 = 1, 2, . . . , 𝑛) be the synchro-
nization errors.

Select the linear control input functions 𝑢𝑖(𝑡) as the
following form:

𝑢𝑖 (𝑡) = 𝜂𝑖 (𝑦𝑖 (𝑡) − 𝑥𝑖 (𝑡)) , (12)

where each 𝜂𝑖 > 0 (𝑖 = 1, . . . , 𝑛) denotes the control gain.
Then the error systems are obtained:

𝐷𝛼𝑒𝑖 (𝑡)
= − (𝑐𝑖 + 𝜂𝑖) 𝑒𝑖 (𝑡)

+ 𝑛∑
𝑗=1

𝑎𝑖𝑗 (𝑡) [𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗 (𝑥𝑗 (𝑡))]

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗 (𝑡) [𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏)) − 𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏))] .

(13)

The vector form is as follows:

𝐷𝛼𝑒 (𝑡) = −Ω𝑒 (𝑡) + 𝐴 (𝑡) [𝑓 (𝑦 (𝑡)) − 𝑓 (𝑥 (𝑡))]
+ 𝐵 (𝑡) [𝑔 (𝑦 (𝑡 − 𝜏)) − 𝑔 (𝑥 (𝑡 − 𝜏))] , (14)

where 𝑒(𝑡) = (𝑒1(𝑡), . . . , 𝑒𝑛(𝑡))𝑇 andΩ = diag(𝑐1 + 𝜂1, . . . , 𝑐𝑛 +𝜂𝑛).
The initial conditions 𝑒(𝑡) of system (14) are of the follow-

ing form:

𝑒𝑖 (𝑡) = 𝜋𝑖 (𝑡) − 𝜓𝑖 (𝑡) = 𝜙𝑖 (𝑡) ,
𝑡 ∈ [−𝜏, 0] (𝑖 = 1, . . . , 𝑛) . (15)

Theorem 10. When 1/2 < 𝛼 < 1, suppose that Assumptions 4
and 5 hold, if

[1 + 𝑁𝑒𝑡 + 2 (1 + 𝑁) 𝑒[(𝑀+𝑁𝑒−𝜏)2+1]𝑡] < 𝜀𝛿 ,
𝑡 ∈ [0, 𝑇] , (16)

where 𝑀 = (‖Ω‖ + 𝐴𝐻)√2Γ(2𝛼 − 1)/Γ(𝛼)2𝛼, 𝑁 =𝐵𝐾√2Γ(2𝛼 − 1)/Γ(𝛼)2𝛼; master system (3) is synchronized
with slave system (5) in a finite-time with respect to {0, 𝛿, 𝜀, 𝑇}
under the control (12).

Proof. Let 𝑒0 = 𝜙(0) be the initial condition of system (14),
based on Lemma 8, the solution of system (7) in the form
of the equivalent Volterra fractional integral equation is as
follows:

𝑒 (𝑡) = 𝑒0 + 𝐷−𝛼 [−Ω𝑒 (𝑡) + 𝐴 (𝑡) (𝑓 (𝑦 (𝑡)) − 𝑓 (𝑥 (𝑡)))
+ 𝐵 (𝑡) (𝑔 (𝑦 (𝑡 − 𝜏)) − 𝑔 (𝑥 (𝑡 − 𝜏)))] = 𝑒0 + 1Γ (𝛼)
⋅ ∫𝑡
0
(𝑡 − 𝑠)𝛼−1 [−Ω𝑒 (𝑠)

+ 𝐴 (𝑠) (𝑓 (𝑦 (𝑠)) − 𝑓 (𝑥 (𝑠)))
+ 𝐵 (𝑠) (𝑔 (𝑦 (𝑠 − 𝜏)) − 𝑔 (𝑥 (𝑠 − 𝜏)))] 𝑑𝑠.

(17)

Taking the norm ‖ ⋅ ‖ on both sides of the above system,
according to the Assumptions 4 and 5, gives the following:

‖𝑒 (𝑡)‖ ≤ 𝑒0 + 1Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 [−Ω𝑒 (𝑠)

+ 𝐴 (𝑠) (𝑓 (𝑦 (𝑠)) − 𝑓 (𝑥 (𝑠)))
+ 𝐵 (𝑠) (𝑔 (𝑦 (𝑠 − 𝜏)) − 𝑔 (𝑥 (𝑠 − 𝜏)))] 𝑑𝑠
≤ 𝜙 (0) + 1Γ (𝛼) ∫

𝑡

0
(𝑡 − 𝑠)𝛼−1 [‖Ω‖ ‖𝑒 (𝑠)‖

+ 𝐴𝐻‖𝑒 (𝑠)‖ + 𝐵𝐾 ‖𝑒 (𝑠 − 𝜏)‖] 𝑑𝑠 = 𝜙 (0)
+ (‖Ω‖ + 𝐴𝐻)Γ (𝛼) ∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑒𝑠𝑒−𝑠 ‖𝑒 (𝑠)‖ 𝑑𝑠 + 𝐵𝐾Γ (𝛼)

⋅ ∫𝑡
0
(𝑡 − 𝑠)𝛼−1 𝑒𝑠𝑒−𝑠 ‖𝑒 (𝑠 − 𝜏)‖ 𝑑𝑠.

(18)
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By using theCauchy-Schwartz inequality, (18) gets the follow-
ing:

‖𝑒 (𝑡)‖ ≤ 𝜙 (0)
+ (‖Ω‖ + 𝐴𝐻)Γ (𝛼) (∫𝑡

0
(𝑡 − 𝑠)2(𝛼−1) 𝑒2𝑠𝑑𝑠)1/2

⋅ (∫𝑡
0
𝑒−2𝑠 ‖𝑒 (𝑠)‖2 𝑑𝑠)1/2

+ 𝐵𝐾Γ (𝛼) (∫
𝑡

0
(𝑡 − 𝑠)2(𝛼−1) 𝑒2𝑠𝑑𝑠)1/2

⋅ (∫𝑡
0
𝑒−2𝑠 ‖𝑒 (𝑠 − 𝜏)‖2)1/2 𝑑𝑠 = 𝜙 (0)

+ (∫𝑡
0
(𝑡 − 𝑠)2(𝛼−1) 𝑒2𝑠𝑑𝑠)1/2

⋅ [ (‖Ω‖ + 𝐴𝐻)Γ (𝛼) (∫𝑡
0
𝑒−2𝑠 ‖𝑒 (𝑠)‖2 𝑑𝑠)1/2 𝑑𝑠

+ 𝐵𝐾Γ (𝛼) (∫
𝑡

0
𝑒−2𝑠 ‖𝑒 (𝑠 − 𝜏)‖2)1/2 𝑑𝑠] .

(19)

Note that

∫𝑡
0
(𝑡 − 𝑠)2(𝛼−1) 𝑒2𝑠𝑑𝑠 = ∫𝑡

0
𝑧(2𝛼−2)𝑒2(𝑡−𝑧)𝑑𝑧

= 𝑒2𝑡 ∫𝑡
0
𝑧(2𝛼−2)𝑒−2𝑧𝑑𝑧

= 2𝑒2𝑡4𝛼 ∫2𝑡
0

𝜃(2𝛼−2)𝑒−𝜃𝑑𝜃
< 2𝑒2𝑡4𝛼 Γ (2𝛼 − 1) .

(20)

Noting that 𝑒(𝑡) = 𝜙(𝑡) (𝑡 ∈ [−𝜏, 0]) and ‖𝜙‖ =
sup𝜃∈[−𝜏,0]‖𝜙(𝜃)‖, one obtains

∫𝑡
0
𝑒−2𝑠 ‖𝑒 (𝑠 − 𝜏)‖2 𝑑𝑠 ≤ 𝑒−2𝜏 ∫𝑡

−𝜏
𝑒−2𝑢 ‖𝑒 (𝑢)‖2 𝑑𝑢

= 𝑒−2𝜏 [∫0
−𝜏

𝑒−2𝑢 ‖𝑒 (𝑢)‖2 𝑑𝑢 + ∫𝑡
0
𝑒−2𝑢 ‖𝑒 (𝑢)‖2 𝑑𝑢]

≤ 𝜙2 + 𝑒−2𝜏 ∫𝑡
0
𝑒−2𝑠 ‖𝑒 (𝑠)‖2 𝑑𝑠.

(21)

Then

‖𝑒 (𝑡)‖ ≤ 𝜙 (0)
+ 𝑒𝑡√2Γ (2𝛼 − 1)2𝛼 [(‖Ω‖ + 𝐴𝐻)Γ (𝛼) (∫𝑡

0
𝑒−2𝑠 ‖𝑒 (𝑠)‖2 𝑑𝑠)1/2

+ 𝐵𝐾Γ (𝛼) (𝜙2 + 𝑒−2𝜏 ∫𝑡
0
𝑒−2𝑠 ‖𝑒 (𝑠)‖2)1/2 𝑑𝑠] < (𝜙

+ 𝑒𝑡√2Γ (2𝛼 − 1)𝐵𝐾2𝛼Γ (𝛼) 𝜙)
+ 𝑒𝑡 [√2Γ (2𝛼 − 1) (‖Ω‖ + 𝐴𝐻)2𝛼Γ (𝛼)
+ √2Γ (2𝛼 − 1)𝐵𝐾2𝛼Γ (𝛼) 𝑒−𝜏](∫𝑡

0
𝑒−2𝑠 ‖𝑒 (𝑠)‖2 𝑑𝑠)1/2 𝑑𝑠.

(22)

Let 𝑀 = √2Γ(2𝛼 − 1)(‖Ω‖ + 𝐴𝐻)/2𝛼Γ(𝛼) and 𝑁 =√2Γ(2𝛼 − 1)𝐵𝐾/2𝛼Γ(𝛼).
Then

‖𝑒 (𝑡)‖ 𝑒−𝑡
≤ (𝜙 𝑒−𝑡 + 𝑁𝜙)

+ (𝑀 + 𝑁𝑒−𝜏) (∫𝑡
0
𝑒−2𝑠 ‖𝑒 (𝑠)‖2 𝑑𝑠)1/2 𝑑𝑠.

(23)

According to Lemmas 7 and 9, one has

‖𝑒 (𝑡)‖ 𝑒−𝑡 ≤ (𝜙 𝑒−𝑡 + 𝑁𝜙) + (𝑀 + 𝑁𝑒−𝜏)
⋅ [(1 − (1 − 𝑒−(𝑀+𝑁𝑒−𝜏)2𝑡)1/2)−2

⋅ ∫𝑡
0
(𝜙 𝑒−𝑠 + 𝑁𝜙)2 𝑒−(𝑀+𝑁𝑒−𝜏)2𝑠𝑑𝑠]

1/2

≤ (𝜙 𝑒−𝑡 + 𝑁𝜙) + (𝑀 + 𝑁𝑒−𝜏) 2𝑒(𝑀+𝑁𝑒−𝜏)2𝑡
⋅ [∫𝑡
0
(𝜙 𝑒−𝑠 + 𝑁𝜙)2 𝑒−(𝑀+𝑁𝑒−𝜏)2𝑠𝑑𝑠]

1/2

≤ (𝜙 𝑒−𝑡 + 𝑁𝜙) + 2 (1 + 𝑁) 𝜙 𝑒(𝑀+𝑁𝑒−𝜏)2𝑡
= [𝑒−𝑡 + 𝑁 + 2 (1 + 𝑁) 𝑒(𝑀+𝑁𝑒−𝜏)2𝑡] 𝜙 .

(24)

Therefore

‖𝑒 (𝑡)‖ ≤ [1 + 𝑁𝑒𝑡 + 2 (1 + 𝑁) 𝑒[(𝑀+𝑁𝑒−𝜏)2+1]𝑡] 𝜙 . (25)

Hence, if (16) is satisfied and ‖𝜙‖ < 𝛿, then ‖𝑒(𝑡)‖ < 𝜀; master
system (3) is synchronized with slave system (5) in a finite-
time.

Theorem 11. When 0 < 𝛼 ≤ 1/2, suppose that Assumptions 4
and 5 hold, if

1 + 𝑁𝑒𝑡 + 𝑞 (1 + 𝑁) 𝑒[(𝑀+𝑁𝑒−𝜏)𝑞+1]𝑡 < 𝜀𝛿 , 𝑡 ∈ [0, 𝑇] , (26)
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where 𝑀 = (‖Ω‖ + 𝐴𝐻)[Γ(𝛼2)/Γ𝑝(𝛼)𝑝𝛼2]1/𝑝, 𝑁 =𝐵𝐾[Γ(𝛼2)/Γ𝑝(𝛼)𝑝𝛼2]1/𝑝 and 𝑝 = 1 + 𝛼, 𝑞 = 1 + 1/𝛼; then
master system (3) is synchronized with slave system (5) in a
finite-time with respect to {0, 𝛿, 𝜀, 𝑇} under control (12).
Proof. Similar to Theorem 10, we can obtain the following
estimation:

‖𝑒 (𝑡)‖ ≤ 𝜙 (0)
+ (‖Ω‖ + 𝐴𝐻)Γ (𝛼) ∫𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑒𝑠𝑒−𝑠 ‖𝑒 (𝑠)‖ 𝑑𝑠

+ 𝐵𝐾Γ (𝛼) ∫
𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑒𝑠𝑒−𝑠 ‖𝑒 (𝑠 − 𝜏)‖ 𝑑𝑠.

(27)

Let𝑝 = 1+𝛼, 𝑞 = 1+1/𝛼; obviously,𝑝, 𝑞 > 1 and 1/𝑝+1/𝑞 = 1,
and following the Hölder inequality, we get

‖𝑒 (𝑡)‖ ≤ 𝜙 (0)
+ (‖Ω‖ + 𝐴𝐻)Γ (𝛼) [∫𝑡

0
(𝑡 − 𝑠)𝑝(𝛼−1) 𝑒𝑝𝑠𝑑𝑠]1/𝑝

⋅ [∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠)‖𝑞 𝑑𝑠]1/𝑞

+ 𝐵𝐾Γ (𝛼) [∫
𝑡

0
(𝑡 − 𝑠)𝑝(𝛼−1) 𝑒𝑝𝑠𝑑𝑠]1/𝑝

⋅ [∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠 − 𝜏)‖𝑞 𝑑𝑠]1/𝑞 = 𝜙 (0)

+ [∫𝑡
0
(𝑡 − 𝑠)𝑝(𝛼−1) 𝑒𝑝𝑠𝑑𝑠]1/𝑝

⋅ [ (‖Ω‖ + 𝐴𝐻)Γ (𝛼) (∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠)‖𝑞 𝑑𝑠)1/𝑞

+ 𝐵𝐾Γ (𝛼) (∫
𝑡

0
𝑒−𝑞𝑠 ‖𝑒 (𝑠 − 𝜏)‖𝑞 𝑑𝑠)1/𝑞] .

(28)

Since

∫𝑡
0
(𝑡 − 𝑠)𝑝(𝛼−1) 𝑒𝑝𝑠𝑑𝑠 = 𝑒𝑝𝑡 ∫𝑡

0
𝑧𝑝(𝛼−1)𝑒−𝑝𝑧𝑑𝑧

= 𝑒𝑝𝑡𝑝𝑝(𝛼−1)+1 ∫
𝑝𝑡

0
𝑢𝑝(𝛼−1)𝑒−𝑢𝑑𝑢 ≤ 𝑒𝑝𝑡

𝑝𝛼2 Γ (𝛼2) ,
∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠 − 𝜏)‖𝑞 𝑑𝑠 ≤ 𝑒−𝑞𝜏 ∫𝑡

−𝜏
𝑒−𝑞𝑢 ‖𝑒 (𝑢)‖𝑞 𝑑𝑢

= 𝑒−𝑞𝜏 [∫0
−𝜏

𝑒−𝑞𝑢 ‖𝑒 (𝑢)‖𝑞 𝑑𝑢 + ∫𝑡
0
𝑒−𝑞𝑢 ‖𝑒 (𝑢)‖𝑞 𝑑𝑢]

≤ 𝜙𝑞 + 𝑒−𝑞𝜏 ∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠)‖𝑞 𝑑𝑠.

(29)

then

‖𝑒 (𝑡)‖ ≤ 𝜙 (0) + [Γ (𝛼2)
𝑝𝛼2 ]

1/𝑝

⋅ 𝑒𝑡 [(‖Ω‖ + A𝐻)Γ (𝛼) (∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠)‖𝑞 𝑑𝑠)1/𝑞

+ 𝐵𝐾Γ (𝛼) (𝜙𝑞 + 𝑒−𝑞𝜏 ∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠)‖𝑞 𝑑𝑠)1/𝑞]

≤ [
[
𝜙 + 𝐵𝐾( Γ (𝛼2)

Γ𝑝 (𝛼) 𝑝𝛼2 )
1/𝑝

𝑒𝑡 𝜙]]
+ 𝑒𝑡 [

[
(‖Ω‖ + 𝐴𝐻)( Γ (𝛼2)

Γ𝑝 (𝛼) 𝑝𝛼2 )
1/𝑝

+ 𝐵𝐾( Γ (𝛼2)
Γ𝑝 (𝛼) 𝑝𝛼2 )

1/𝑝

𝑒−𝜏]
]

⋅ (∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠)‖𝑞 𝑑𝑠)1/𝑞 .

(30)

Let 𝑀 = (‖Ω‖ + 𝐴𝐻)(Γ(𝛼2)/Γ𝑝(𝛼)𝑝𝛼2)1/𝑝, 𝑁 = 𝐵𝐾(Γ(𝛼2)/Γ𝑝(𝛼)𝑝𝛼2)1/𝑝. Then

‖𝑒 (𝑡)‖ 𝑒−𝑡
≤ (𝜙 𝑒−𝑡 + 𝑁𝜙)

+ (𝑀 + 𝑁𝑒−𝜏) (∫𝑡
0
𝑒−𝑞𝑠 ‖𝑒 (𝑠)‖𝑞 𝑑𝑠)1/𝑞 𝑑𝑠.

(31)

According to Lemmas 7 and 9, one has

‖𝑒 (𝑡)‖ 𝑒−𝑡 ≤ (𝜙 𝑒−𝑡 + 𝑁𝜙) + (𝑀 + 𝑁𝑒−𝜏)
⋅ [(1 − (1 − 𝑒−(𝑀+𝑁𝑒−𝜏)𝑞𝑡)1/𝑞)−𝑞

⋅ ∫𝑡
0
(𝜙 𝑒−𝑠 + 𝑁𝜙)𝑞 𝑒−(𝑀+𝑁𝑒−𝜏)𝑞𝑠𝑑𝑠]

1/𝑞

≤ (𝜙 𝑒−𝑡 + 𝑁𝜙) + (𝑀 + 𝑁𝑒−𝜏) 𝑞𝑒(𝑀+𝑁𝑒−𝜏)𝑞𝑡
⋅ [∫𝑡
0
(𝜙 𝑒−𝑠 + 𝑁𝜙)𝑞 𝑒−(𝑀+𝑁𝑒−𝜏)𝑞𝑠𝑑𝑠]

1/𝑞



6 Mathematical Problems in Engineering

≤ (𝜙 𝑒−𝑡 + 𝑁𝜙) + 𝑞 (1 + 𝑁) 𝜙 𝑒(𝑀+𝑁𝑒−𝜏)𝑞𝑡
= [𝑒−𝑡 + 𝑁 + 𝑞 (1 + 𝑁) 𝑒(𝑀+𝑁𝑒−𝜏)𝑞𝑡] 𝜙 .

(32)

Therefore

‖𝑒 (𝑡)‖ ≤ [1 + 𝑁𝑒𝑡 + 𝑞 (1 + 𝑁) 𝑒[(𝑀+𝑁𝑒−𝜏)𝑞+1]𝑡] 𝜙 . (33)

Hence, if (26) is satisfied and ‖𝜙‖ < 𝛿, then ‖𝑒(𝑡)‖ < 𝜀; master
system (3) is synchronized with slave system (5) in a finite-
time.

Remark 12. References [24–28] discussed the finite-time
synchronization of neural networks, which only considered
integer-order systems.

Remark 13. Generally, time-delayed differential models
unavoidably exist in neural networks [37]. However, quite a
few researches investigated the finite-time synchronization of
neural networks with delay. Hence, it is foremost important
and necessary to consider finite-time synchronization of
fractional-order delayed neural networks.

Remark 14. In this paper, Assumptions 4 and 5 are general,
not too strict; many functions can satisfy the assumptions; for
example, [15, 17, 29] considered these assumptions too.

Remark 15. In [33], the authors discussed the finite-time
synchronization of fractional-order memristor-based neural
networks with time delays by using Laplace transform, gen-
eralized Gronwall’s inequality and Mittag-Leffler functions,
and the results showed Mittag-Leffler functions. In this
paper, employing Lemma 4 proposed in [35] and Bernoulli
inequality can obtain results that only include exponential
functions, given that the form is simpler and the calculation
is easier.

Remark 16. InTheorem 10, from (12) and (14) and inequality
(16), it is obvious that the convergence time 𝑇 is proportional
to the inverse of the control gain 𝜂𝑖. Therefore, a greater 𝜂𝑖
results in the shorter convergence time 𝑇, and therefore 𝜂𝑖
should be selected in accordance with the convergence time𝑇 to be short.

Remark 17. In [32], the authors discussed finite-time stability
of fractional-order neural networks with delay by utilizing
Gronwall inequality. Unlike the previous work [32], in this
paper, we discussed the finite-time synchronization for a class
of fractional-order delayed neural networks by employing
Lemma 4 proposed in [35], Bernoulli inequality, and inequal-
ity skills; two new delay-dependent sufficient conditions have
been established.

Remark 18. Different from integer-order delayed systems, it is
difficult to construct Lyapunov functions for fractional-order
nonlinear systemswith time delay; results have been obtained
using different techniques from approaches used in the area
of finite synchronization. By employing inequality skills, new
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Figure 1: The errors state of 𝑒1 (order 𝛼 = 0.4).

sufficient conditions ensuring finite-time synchronization are
derived.

4. Numerical Simulations

Consider the following two-dimensional delayed fractional-
order Hopfield neural networks:

𝐷𝛼𝑥 (𝑡) = −𝐶𝑥 (𝑡) + 𝐴 (𝑡) 𝑓 (𝑥 (𝑡))
+ 𝐵 (𝑡) 𝑔 (𝑥 (𝑡 − 𝜏)) + 𝐼, (34)

for 𝑡 ∈ 𝐽 = [0, 15], where 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡))𝑇, 𝛼 = 0.4 or𝛼 = 0.7, 𝜏 = 0.1, 𝐼 = (0, 0)𝑇, and 𝑓𝑗(𝑥𝑗(𝑡)) = 𝑔𝑗(𝑥𝑗(𝑡)) =
tanh(𝑥𝑗(𝑡)), (𝑗 = 1, 2), denoting tanh(𝑥(𝑡)) = (tanh(𝑥1(𝑡)),
tanh(𝑥2(𝑡)))𝑇, because of (tanh(𝑥)) = 1 − (tanh(𝑥))2 ≤ 1,
according to LagrangeTheorem; clearly,𝑓(𝑥) and𝑔(𝑥) satisfy
Assumption 4 with 𝐻 = 𝐾 = 1, 𝐴(𝑡) = ( 0.2 −0.10.1 0.2 ), 𝐵(𝑡) =( −0.5 −0.1−0.2 −0.5 ), 𝐶 = ( 0.1 00 0.1 ). So, according to Assumption 5, 𝐴 =
sup𝑡≥0‖𝐴(𝑡)‖ = 0.3, 𝐵 = sup𝑡≥0‖𝐵(𝑡)‖ = 0.7, ‖𝐶‖ = 0.1.
Choose the initial values of master system and slave system
as follows: 𝑥1(0) = 4, 𝑥2(0) = 2, 𝑦1(0) = 3, 𝑦2(0) = 1.

When 𝛼 = 0.4, take 𝛿 = 0.01, 𝜖 = 1, 𝜏 = 0.1 and
select the control gain 𝜂1 = 4, 𝜂2 = 5; apparently, the
condition of Theorem 11 is satisfied. It could be verified that𝑀 = 8.0815, 𝑁 = 1.0674, and the estimated time of finite-
time synchronization is 𝑇 = 0.7099. Synchronization errors
between master and slave systems are shown in Figures 1 and
2. It is clearly seen that the synchronization errors converge
to zero, indicating that master system and slave system are
synchronized in a finite-time. For comparison purposes, the
curves of the state variable of the master system and the slave
system are shown in Figures 3 and 4.

When 𝛼 = 0.7, take 𝛿 = 0.01, 𝜖 = 1, 𝜏 = 0.1 and select
the control gain 𝜂1 = 2, 𝜂2 = 4; apparently, the condition of
Theorem 10 is satisfied. It is easy to obtain𝑀 = 4.2950, 𝑁 =0.6992, and the estimated time of finite-time synchronization
is 𝑇 = 0.5937. Synchronization errors between master and
slave systems are shown in Figures 5 and 6. It can be seen that
the synchronization errors converge to zero, confirming that
master system and slave system are synchronized in a finite-
time. Also, for comparison purposes, the curves of the state
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Figure 2: The errors state of 𝑒2 (order 𝛼 = 0.4).
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Figure 3: The synchronization trajectories of 𝑥1 and 𝑦1 (order 𝛼 =0.4).
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Figure 4: The synchronization trajectories of 𝑥2 and 𝑦2 (order 𝛼 =0.4).

variable of the master system and the slave system are shown
in Figures 7 and 8.
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Figure 5: The errors state of 𝑒1 (order 𝛼 = 0.7).
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Figure 6: The errors state of 𝑒2 (order 𝛼 = 0.7).
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Figure 7: The synchronization trajectories of 𝑥1 and 𝑦1 (order 𝛼 =0.7).

5. Conclusions

In this paper, finite-time synchronization for a class
fractional-order delayed neural networks with order 𝛼,0 < 𝛼 ≤ 1/2 and 1/2 < 𝛼 < 1, was discussed. Some new
sufficient conditions are derived to ensure the finite-time
synchronization for this class of fractional-order systems.
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Figure 8: The synchronization trajectories of 𝑥2 and 𝑦2 (order 𝛼 =0.7).

Numerical example is presented to verify the effectiveness
of the theoretical results. The proposed methods are novel
and solve well the finite-time synchronization of fractional-
order delayed neural networks. We would like to point
out that it is possible to extend the methods to other
fractional-order models, such as fractional-order delayed
neutral-type neural networks and fractional neural networks
with incommensurate. These issues will be further worth
discussing.
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