6 research outputs found

    Sliding mode control of robotics systems actuated by pneumatic muscles.

    Get PDF
    This dissertation is concerned with investigating robust approaches for the control of pneumatic muscle systems. Pneumatic muscle is a novel type of actuator. Besides having a high ratio of power to weight and flexible control of movement, it also exhibits many analogical behaviors to natural skeletal muscle, which makes them the ideal candidate for applications of anthropomorphic robotic systems. In this dissertation, a new phenomenological model of pneumatic muscle developed in the Human Sensory Feedback Laboratory at Wright Patterson Air Force Base is investigated. The closed loop stability of a one-link planar arm actuated by two pneumatic muscles using linear state feedback is proved. Robotic systems actuated by pneumatic muscles are time-varying and nonlinear due to load variations and uncertainties of system parameters caused by the effects of heat. Sliding mode control has the advantage that it can provide robust control performance in the presence of model uncertainties. Therefore, it is mainly utilized and further complemented with other control methods in this dissertation to design the appropriate controller to perform the tasks commanded by system operation. First, a sliding mode controller is successfully proposed to track the elbow angle with bounded error in a one-Joint limb system with pneumatic muscles in bicep/tricep configuration. Secondly, fuzzy control, which aims to dynamically adjust the sliding surface, is used along with sliding mode control. The so-called fuzzy sliding mode control method is applied to control the motion of the end-effector in a two-Joint planar arm actuated by four groups of pneumatic muscles. Through computer simulation, the fuzzy sliding mode control shows very good tracking accuracy superior to nonfuzzy sliding mode control. Finally, a two-joint planar arm actuated by four groups of pneumatic muscles operated in an assumed industrial environment is presented. Based on the model, an integral sliding mode control scheme is proposed as an ultimate solution to the control of systems actuated by pneumatic muscles. As the theoretical proof and computer simulations show, the integral sliding mode controller, with strong robustness to model uncertainties and external perturbations, is superior for performing the commanded control assignment. Based on the investigation in this dissertation, integral sliding mode control proposed here is a very promising robust control approach to handle systems actuated by pneumatic muscles

    Bayesian Model Based Tracking with Application to Cell Segmentation and Tracking

    Get PDF
    The goal of this research is to develop a model-based tracking framework with biomedical imaging applications. This is an interdisciplinary area of research with interests in machine vision, image processing, and biology. This thesis presents methods of image modeling, tracking, and data association applied to problems in multi-cellular image analysis, especially hematopoietic stem cell (HSC) images at the current stage. The focus of this research is on the development of a robust image analysis interface capable of detecting, locating, and tracking individual hematopoietic stem cells (HSCs), which proliferate and differentiate to different blood cell types continuously during their lifetime, and are of substantial interest in gene therapy, cancer, and stem-cell research. Such a system can be potentially employed in the future to track different groups of HSCs extracted from bone marrow and recognize the best candidates based on some biomedical-biological criteria. Selected candidates can further be used for bone marrow transplantation (BMT) which is a medical procedure for the treatment of various incurable diseases such as leukemia, lymphomas, aplastic anemia, immune deficiency disorders, multiple myeloma and some solid tumors. Tracking HSCs over time is a localization-based tracking problem which is one of the most challenging tracking problems to be solved. The proposed cell tracking system consists of three inter-related stages: i) Cell detection/localization, ii) The association of detected cells, iii) Background estimation/subtraction. that will be discussed in detail

    Analiza stabilnosti nelinearnih sustava vođenih analitičkim neizrazitim regulatorom

    Get PDF
    Tema ove disertacije je analiza stabilnosti nelinearnih mehaničkih sustava vođenih analitičkim neizrazitim regulatorom. Analitički neizraziti regulator je nekonvencionalni pristup koji koristi analitičke funkcije za određivanje centara izlaznih neizrazitih skupova umjesto baze pravila ponašanja. Analiza stabilnosti je zasnovana na Lyapunovljevoj izravnoj metodi i ne zahtijeva prikaz dinamike sustava upravljanja u obliku Takagi- Sugeno neizrazitog modela. Analiza stabilnosti je podijeljena na četiri osnovna dijela. Prvo se formiraju jednadžbe pogreške zatvorenog sustava upravljanja. Drugo, formira se kandidat za Lyapunovljevu funkciju. Zatim se izvode uvjeti stabilnosti koji garantiraju pozitivnu definitnost Lypunovljeve funkcije i negativnu definitnost njene vremenske derivacije. Na kraju, primjenjuje se LaSalleov princip invarijantnosti koji garantira asimptotsku stabilnost. Time su dobiveni kriteriji lokalne stabilnosti koji uključuju svega nekoliko parametara upravljačkog sustava. Na osnovu dobivenih rezultata razmatrane su neke modifikacije analitičkog neizrazitog regulatora koje osiguravaju globalnu asimptotsku stabilnost. Nadalje, Lyapunovljeve funkcije analiziranih regulatora su iskorištene za evaluaciju performansi i određivanje optimalnih vrijednosti parametara regulatora. \Navedeni pristup zasnovan je na konstrukciji parametarski ovisne Lyapunovljeve funkcije. Odgovarajućim izborom slobodnog parametra dobivena je ocjena integralnog indeksa performanse. Indeks performanse ovisi samo o nekoliko parametara regulatora i nekoliko parametara koji karakteriziraju dinamiku robota. Optimalne vrijednosti parametara regulatora dobivene su minimizacijom indeksa performanse. Procedura podešavanja parametara demonstrirana je na simulacijskom modelu dva različita tipa robota

    Fuzzy Control Application to a Magnetic Suspension System: Experimental Comparison

    Full text link
    [EN] In this work, a comparative experimental study of a fuzzy control scheme applied to a magnetic levitation system is presented. In this study, the experimental system responses for the case of position regulation of a sphere in levitation, for several control schemes, are shown. The applied position fuzzy control to the magnetic levitation system of a metallic sphere is of the PD type with current feedforward, equivalent to a gravity compensation. The main contribution of this work is the experimental application, in real time, of a fuzzy control in a magnetic levitation system and its comparison with other linear and non-linear control schemes; namely, PD and PID controllers with feedforward compensation and an Interconnection and Damping Assignment-Passivity Based Control scheme, a recently approach introduced in the control literature.[ES] Este trabajo presenta un esquema de control lógico borroso de regulación de posición aplicado a un sistema de suspensión o levitación magnética de una esfera metálica. El principal ingrediente de aportación de este trabajo es la aplicación experimental en tiempo real de dicho controlador y su comparación con otros esquemas tanto lineales como no lineales; a saber: esquemas de control PD y PID con precompensación, y un esquema basado en pasividad, asignación de amortiguamiento e interconexión, introducido recientemente en la literatura.Este trabajo fue apoyado por CONACYT y DGEST.Ollervides, J.; Santibáñez, V.; Llama, M.; Dzul, A. (2010). Aplicación de Control Borroso a un Sistema de Suspensión Magnética: Comparación Experimental. Revista Iberoamericana de Automática e Informática industrial. 7(3):63-71. https://doi.org/10.1016/S1697-7912(10)70043-1OJS637173Andújar, J. M., Barragán, A. J., Gegúndez, M. E., & Maestre, M. (2007). Control borroso multivariable basado en heurística. un caso práctico: grúa porta contenedores. Revista Iberoamericana de Automática e Informática Industrial RIAI, 4(2), 81-89. doi:10.1016/s1697-7912(07)70212-1Ariño, C., Sala, A., & Navarro, J. L. (2007). Diseño de controladores en varios puntos de funcionamiento para una clase de modelos borrosos Takagi-Sugeno afines. Revista Iberoamericana de Automática e Informática Industrial RIAI, 4(2), 98-105. doi:10.1016/s1697-7912(07)70214-5Al-Hadithi, B. M., Matía, F., & Jiménez, A. (2007). Análisis de Estabilidad de Sistemas Borrosos. Revista Iberoamericana de Automática e Informática Industrial RIAI, 4(2), 7-25. doi:10.1016/s1697-7912(07)70205-4Buckley, J. J., & Ying, H. (1989). Fuzzy controller theory: Limit theorems for linear fuzzy control rules. Automatica, 25(3), 469-472. doi:10.1016/0005-1098(89)90017-4Calcev, G. (1998). Some remarks on the stability of Mamdani fuzzy control systems. IEEE Transactions on Fuzzy Systems, 6(3), 436-442. doi:10.1109/91.705511Fitzgerald, A.E., Ch. Kingsley Jr. and A. Kusko (1971). Electric Machinery. Third Edition.Goethem, J.V., F. Weber and G. Henneberger (2002). Fuzzy Control of Magnetic Levitation System for a Linear Drive and Comparison with a State Control. The 17th International Conference on MagneticallyMaglev’2002. PP08103.Kelly, R., Haber, R., Haber-Guerra, R. E., & Reyes, F. (1999). Lyapunov Stable Control of Robot Manipulators: A Fuzzy Self-Tuning Procedure. Intelligent Automation & Soft Computing, 5(4), 313-326. doi:10.1080/10798587.1999.10750611Lewis, F. L., & Liu, K. (1996). Towards a paradigm for fuzzy logic control. Automatica, 32(2), 167-181. doi:10.1016/0005-1098(96)85547-6Llama, M. A., Kelly, R., & Santibanez, V. (2000). Stable computed-torque control of robot manipulators via fuzzy self-tuning. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 30(1), 143-150. doi:10.1109/3477.826954Matía, F., Jiménez, A., Galán, R., & Sanz, R. (1992). Fuzzy controllers: Lifting the linear-nonlinear frontier. Fuzzy Sets and Systems, 52(2), 113-128. doi:10.1016/0165-0114(92)90044-5Putting energy back in control. (2001). IEEE Control Systems, 21(2), 18-33. doi:10.1109/37.915398Quanser Consulting Magnetic Levitation (MagLev) (2003). Instructor Manual, Specialty Experiment: PIV-plus-Feedfoward Control. Quanser Innovate Educate.Santibanez, V., Kelly, R., & Llama, M. A. (2004). Global Asymptotic Stability of a Tracking Sectorial Fuzzy Controller for Robot Manipulators. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34(1), 710-718. doi:10.1109/tsmcb.2003.811764Santibanez, V., Kelly, R., & Llama, M. A. (2005). A novel global asymptotic stable set-point fuzzy controller with bounded torques for robot manipulators. IEEE Transactions on Fuzzy Systems, 13(3), 362-372. doi:10.1109/tfuzz.2004.841735Wang (1997). A Course in Fuzzy Systems and Control. Prentice-Hall PTR.WinCon 4.1 Quanser Consulting (2003). User's Guide. Quanser Innovate Educate.Zadeh, L.A. (1965). Fuzzy sets. Information and Control 8, pp. 338–353

    Saturated regulation with derivative variable gain for robot manipulators

    Get PDF
    [EN] In this paper a family with a large number of hyperbolictype saturated regulators for robot manipulators, was presented. The proposed regulators consider a constant proportional gain while the derivative variable gain is self-tuned according to a function that depends on the position error, speed of motion and a damping factor, in order to modify the velocity of the transient response of the robot. The derivative control with variable gain enables reduced overshots, oscillations and ripple, enabling a smooth arrival to the steady state. The paper also proposes a strict Lyapunov function which enables the demonstration of asymptotic global stability of the closed-loop equation. In order to illustrate the performance and functionality of the proposed family of control schemes, an experimental comparison between seven control schemes was implemented. Five of these control schemes belong to the proposed family while two additional control schemes are well-known strategies such as the proportional-derivative (PD) and hyperbolic tangent (Tanh) control schemes. The experiments were performed by using a three degree-of-freedom, direct-drive robot manipulator.[ES] En este trabajo se presenta una familia grande de reguladores saturados tipo hiperbólicos para robots manipuladores. La propuesta considera a la ganancia proporcional constante y a la ganancia derivativa variable con sintonía automática definida en función del error de posición, velocidad de movimiento y un factor de inyección de amortiguamiento para modificar la velocidad de respuesta del robot. La acción de control derivativa con ganancia variable permite reducir sobreimpulsos, oscilaciones y rizo, tal que alcance el estado estacionario en forma suave. Asimismo, se presenta la propuesta de una función estricta de Lyapunov que permite demostrar la estabilidad asintótica global de la ecuación en lazo cerrado. Para mostrar el desempeño y funcionalidad de la familia propuesta de esquemas de control, un análisis comparativo experimental fue desarrollado entre siete estructuras de control, cinco reguladores pertenecen a la familia propuesta, y dos algoritmos de control bien conocidos como son el proporcional derivativo (PD) y tangente hiperbólico (Tanh). Los resultados experimentales fueron obtenidos con un robot manipulador de transmisión directa de tres grados de libertad.M.A. Limón-Díaz agradece por la beca # 351549 otorgada por CONACyT para estudios de doctorado.Limón-Díaz, MA.; Reyes-Cortés, F.; González-Galván, EJ. (2017). Regulacion Saturada con Ganancia Variable Derivativa de Robots Manipuladores. Revista Iberoamericana de Automática e Informática industrial. 14(4):434-445. https://doi.org/10.1016/j.riai.2017.06.001OJS434445144Armendariz, J., Parra-Vega, V., Garcia-Rodriguez, R., Hirai, S., 2012. Dynamic self-tuning pd control for tracking of robot manipulators. In: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, pp. 1172- 1179. DOI: 10.1109/CDC.2012.6426562Åstrom, ¨ K. J., Wittenmark, B., 1973. On self tuning regulators. Automatica 9 (2), 185-199.Bai, E.-W., Huang, Y.-F., 2000. Variable gain parameter estimation algorithms for fast tracking and smooth steady state. Automatica 36 (7), 1001-1008.Canudas de Wit, C., Olsson, H., Astrom, K. J., Lischinsky, P., Mar 1995. A new model for control of systems with friction. IEEE Transactions on Automatic Control 40 (3), 419-425. DOI: 10.1109/9.376053Chavez, C., Reyes, F., Gonz ' alez, E., Mendoza, M., Bonilla, I., 2012. Experi- ' mental evaluation of parameter identification schemes on an anthropomorphic direct drive robot. International Journal of Advanced Robotic Systems 9. DOI: DOI: 10.5772/52190Chavez-Olivares, C. A., Reyes-Cort ' es, ' F., Gonzalez-Galv ' an, ' E. J., MendozaGutierrez, ' M. O., Bonilla-Gutierrez, I., 2012. Experimental ' evaluation of parameter identification schemes on a direct-drive robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226 (10), 1419-1431. DOI: 10.1177/0959651812456795Davila, A., Moreno, ' J. A., Fridman, L., 2010. Variable gains super-twisting algorithm: a Lyapunov based design. In: American Control Conference (ACC), 2010. IEEE, pp. 968-973.Dehghani, A., Khodadadi, H., Oct 2015. Fuzzy logic self-tuning pid control for a single-link flexible joint robot manipulator in the presence of uncertainty. In: Control, Automation and Systems (ICCAS), 2015 15th International Conference on. pp. 186-191. DOI: 10.1109/ICCAS.2015.7364904Draou, A., Miloud, A., Miloud, Y., 2010. A variable gains PI speed controller in a simplified scalar mode control induction machine drive - Design and implementation -. In: Control Automation and Systems (ICCAS), 2010 International Conference on. pp. 2467-2471.Gonzalez, T., Moreno, J. A., Fridman, L., 2012. Variable gain super-twisting sliding mode control. Automatic Control, IEEE Transactions on 57 (8), 2100- 2105.Haj-Ali, A., Ying, H., 2004. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains. Automatica 40 (9), 1551-1559.Hussein, M. T., Soffker, D., 2012. Variable gain control of elastic crane using vision sensor data. In: Control Automation Robotics & Vision (ICARCV), 2012 12th International Conference on. IEEE, pp. 1783-1788.Jafarov, E., Parlakci, M., Istefanopulos, Y., 2005. A new variable structure PIDcontroller design for robot manipulators. Control Systems Technology, IEEE Transactions on 13 (1), 122-130.Kahn, L. R., 1953. Analysis of a limiter as a variable-gain device. Electrical Engineering 72 (12), 1106-1109. DOI: 10.1109/EE.1953.6438395Kay, H. S., Khalil, H. K., 2003. Universal integral controllers with variable gains. In: American Control Conference, 2003. Proceedings of the 2003. Vol. 1. IEEE, pp. 885-890.Kelly, R., Santibáñez, V., Reyes, F., 1996. On saturated-proportional derivative feedback with adaptive gravity compensation of robot manipulators. International Journal of Adaptive Control and Signal Processing 10, 465-479.Kiong, L. C., Rajeswari, M., Kiong, W. E., Rao, 2004. A self-learning nonlinear variable gain proportional derivative (pd) controller in robot manipulators. Pertanika Journal of Science & Technology 12 (2), 139-158.Koditschek, D., 1984. Natural motion for robot arms. In: Decision and Control, 1984. The 23rd IEEE Conference on. Vol. 23. pp. 733-735. DOI: 10.1109/CDC.1984.272106Kumar, P. P., Kar, I., Behera, L., 2006. Variable-gain controllers for nonlinear systems using the T-S fuzzy model. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 36 (6), 1442-1449.Llama, M. A., Kelly, R., Santibáñez, V., 2001. A stable motion control system for manipulators via fuzzy self-tuning. Fuzzy Sets and Systems 124 (2), 133-154. DOI: http://dx.doi.org/10.1016/S0165-0114(00)00061-0Llama, M. A., Kelly, R., Santibaáñz, V., 2010. An adaptive fuzzy controller for robot manipulators: Theory and experimentation. International Journal of Factory Automation, Robotics and Soft.Llama, M. A., Kelly, R., Santibáñez, V., February 2000. Stable computedtorque control of robot manipulators via fuzzy self-tuning. IEEE Systems, Man, and Cybernetics Society, 143-150.Mamdani, E. H., Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies 7 (1), 1-13.Marton, L., Lantos, B., 2009. Control ' of mechanical systems with stribeck friction and backlash. Systems & Control Letters 58 (2), 141-147.Mendoza, M., Zavala-Río, A., Santibáñez, V., Reyes, F., Dec 2014. A pid-type global regulator with simple tuning for robot manipulators with bounded inputs. In: 53rd IEEE Conference on Decision and Control. pp. 6335-6341. DOI: 10.1109/CDC.2014.7040382Meza, J., Santibáñez, V., Soto, R., Llama, M., 2009. Stable fuzzy self-tuning pid control of robot manipulators. In: Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. pp. 2624-2629. DOI: 10.1109/ICSMC.2009.5346112Meza, J., Santibáñez, V., Soto, R., Llama, M., 2012. Fuzzy self-tuning pid semiglobal regulator for robot manipulators. Industrial Electronics, IEEE Transactions on 59 (6), 2709-2717. DOI: 10.1109/TIE.2011.2168789Monopoli, R., Subbarao, V., 1980. A new algorithm for model reference adaptive control with variable adaptation gains. Automatic Control, IEEE Transactions on 25 (6), 1245-1248.Moreno, J. A., Osorio, M., 2008. A Lyapunov approach to second-order sliding mode controllers and observers. In: Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE, pp. 2856-2861.Palm, R., 1997. Model based fuzzy control: fuzzy gain schedulers and sliding mode fuzzy controllers. Springer.Salas, F., Llama, M., Santibáñez, V., May 2013. A stable self-organizing fuzzy pd control for robot manipulators. International Journal of Innovative Computing, Information and Control 9 (5), 2065-2086. URL: http://www.ijicic.org/ijicic-12-02104.pdfSalas, F. G., Llama, M. A., 2010. Self-organizing fuzzy pid tracking control for a 2 d.o.f. robotic arm. In: Congreso Anual 2010 de la Asociación de México de Control Automático. Puerto Vallarta, Jalisco, México.Salas, F. G., Santibáñez, V., Llama, M. A., 2012a. Variable gains PD tracking control of robot manipulators: Stability analysis and simulations. In: World Automation Congress (WAC), 2012. IEEE, pp. 1-6.Salas, F. G., Santibáñez, V., Llama, M. A., 2012b. Variable gains pd tracking control of robot manipulators: Stability analysis and simulations. In: World Automation Congress (WAC), 2012. IEEE, pp. 1-6.Santibáñez, V., Kelly, R., April 1997. Strict lyapunov functions for control of robot manipulators. Automatica 33, 675-682.Santibáñez, V., Kelly, R., Llama, M. A., 2002. Asymptotic stable tracking for robot manipulators via sectorial fuzzy control1/2. In: 15th Triennial World Congress. Barcelona, SpainSantibáñez, V., Kelly, R., Llama, M. A., 2004. Global asymptotic stability of a tracking sectorial fuzzy controller for robot manipulators. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 34 (1), 710- 718.Sifuentes-Mijares, J., Santibanez, V., Medina, J. L. M., Aug 2014. A globally asymptotically stable nonlinear pid regulator with fuzzy self-tuned pd gains, for robot manipulators. In: 2014 World Automation Congress (WAC). pp. 573-578. DOI: 10.1109/WAC.2014.6936049Slotine, J. J. E., Li, W., et al., 1991. Applied nonlinear control. Vol. 199. Prentice hall New Jersey.Takegaki, M., Arimoto, S., June 1981. A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103, 119-125.Tomei, P., 1991. Adaptive pd controller for robot manipulators. IEEE Transactions on Robotics and Automation, 565-570.Wang, L., 1994. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Electrical engineering. PTR Prentice Hall. URL: http://books.google.com.mx/books?id=spIeAQAAIAAJWhitcomb, L. L., Rizzi, A. A., Koditscheck, D. E., February 1993. Comparative experiments with a new adaptive controller for robot arms. IEEE Transactions on Robotics and Automation 9 (1).Xiaobo, G., Aiguo, S., Yan, Z., 2008. Neural Network Control for Telerehabilitation Robot based on Variable Gain. BioMedical Engineering and Informatics, International Conference on 2, 778-782.Ying, H., 1993a. A two-input two-output fuzzy controller is the sum of two nonlinear PI controllers with variable gains. In: Fuzzy Systems, 1993., Second IEEE International Conference on. pp. 35-37 vol.1. DOI: 10.1109/FUZZY.1993.327467Ying, H., 1993b. The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gains. Automatica 29 (6), 1579-1589. DOI: 10.1016/0005-1098(93)90025-OYing, H., 1998a. Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control. Fuzzy Systems, IEEE Transactions on 6 (2), 226-234.Ying, H., 1998b. The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers. Automatica 34 (2), 157-167.Ying, H., 2001. Conditions on general Mamdani fuzzy controllers as nonlinear, variable gain state feedback controllers with stability analysis. In: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th. Vol. 3. IEEE, pp. 1265-1270
    corecore