22 research outputs found

    Interpretable Deep Models for Cardiac Resynchronisation Therapy Response Prediction

    Full text link
    Advances in deep learning (DL) have resulted in impressive accuracy in some medical image classification tasks, but often deep models lack interpretability. The ability of these models to explain their decisions is important for fostering clinical trust and facilitating clinical translation. Furthermore, for many problems in medicine there is a wealth of existing clinical knowledge to draw upon, which may be useful in generating explanations, but it is not obvious how this knowledge can be encoded into DL models - most models are learnt either from scratch or using transfer learning from a different domain. In this paper we address both of these issues. We propose a novel DL framework for image-based classification based on a variational autoencoder (VAE). The framework allows prediction of the output of interest from the latent space of the autoencoder, as well as visualisation (in the image domain) of the effects of crossing the decision boundary, thus enhancing the interpretability of the classifier. Our key contribution is that the VAE disentangles the latent space based on `explanations' drawn from existing clinical knowledge. The framework can predict outputs as well as explanations for these outputs, and also raises the possibility of discovering new biomarkers that are separate (or disentangled) from the existing knowledge. We demonstrate our framework on the problem of predicting response of patients with cardiomyopathy to cardiac resynchronization therapy (CRT) from cine cardiac magnetic resonance images. The sensitivity and specificity of the proposed model on the task of CRT response prediction are 88.43% and 84.39% respectively, and we showcase the potential of our model in enhancing understanding of the factors contributing to CRT response.Comment: MICCAI 2020 conferenc

    Distilling BlackBox to Interpretable models for Efficient Transfer Learning

    Full text link
    Building generalizable AI models is one of the primary challenges in the healthcare domain. While radiologists rely on generalizable descriptive rules of abnormality, Neural Network (NN) models suffer even with a slight shift in input distribution (\eg scanner type). Fine-tuning a model to transfer knowledge from one domain to another requires a significant amount of labeled data in the target domain. In this paper, we develop an interpretable model that can be efficiently fine-tuned to an unseen target domain with minimal computational cost. We assume the interpretable component of NN to be approximately domain-invariant. However, interpretable models typically underperform compared to their Blackbox (BB) variants. We start with a BB in the source domain and distill it into a \emph{mixture} of shallow interpretable models using human-understandable concepts. As each interpretable model covers a subset of data, a mixture of interpretable models achieves comparable performance as BB. Further, we use the pseudo-labeling technique from semi-supervised learning (SSL) to learn the concept classifier in the target domain, followed by fine-tuning the interpretable models in the target domain. We evaluate our model using a real-life large-scale chest-X-ray (CXR) classification dataset. The code is available at: \url{https://github.com/batmanlab/MICCAI-2023-Route-interpret-repeat-CXRs}.Comment: MICCAI, 2023, Early accep

    Uncertainty Aware Training to Improve Deep Learning Model Calibration for Classification of Cardiac MR Images

    Full text link
    Quantifying uncertainty of predictions has been identified as one way to develop more trustworthy artificial intelligence (AI) models beyond conventional reporting of performance metrics. When considering their role in a clinical decision support setting, AI classification models should ideally avoid confident wrong predictions and maximise the confidence of correct predictions. Models that do this are said to be well-calibrated with regard to confidence. However, relatively little attention has been paid to how to improve calibration when training these models, i.e., to make the training strategy uncertainty-aware. In this work we evaluate three novel uncertainty-aware training strategies comparing against two state-of-the-art approaches. We analyse performance on two different clinical applications: cardiac resynchronisation therapy (CRT) response prediction and coronary artery disease (CAD) diagnosis from cardiac magnetic resonance (CMR) images. The best-performing model in terms of both classification accuracy and the most common calibration measure, expected calibration error (ECE) was the Confidence Weight method, a novel approach that weights the loss of samples to explicitly penalise confident incorrect predictions. The method reduced the ECE by 17% for CRT response prediction and by 22% for CAD diagnosis when compared to a baseline classifier in which no uncertainty-aware strategy was included. In both applications, as well as reducing the ECE there was a slight increase in accuracy from 69% to 70% and 70% to 72% for CRT response prediction and CAD diagnosis respectively. However, our analysis showed a lack of consistency in terms of optimal models when using different calibration measures. This indicates the need for careful consideration of performance metrics when training and selecting models for complex high-risk applications in healthcare

    MulViMotion: shape-aware 3D myocardial motion tracking from multi-view cardiac MRI

    Get PDF
    Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods

    Exploring the applicability of machine learning based artificial intelligence in the analysis of cardiovascular imaging

    Get PDF
    Worldwide, the prevalence of cardiovascular diseases has doubled, demanding new diagnostic tools. Artificial intelligence, especially machine learning and deep learning, offers innovative possibilities for medical research. Despite historical challenges, such as a lack of data, these techniques have potential for cardiovascular research. This thesis explores the application of machine learning and deep learning in cardiology, focusing on automation and decision support in cardiovascular imaging.Part I of this thesis focuses on automating cardiovascular MRI analysis. A deep learning model was developed to analyze the ascending aorta in cardiovascular MRI images. The model's results were used to investigate connections between genetic material and aortic properties, and between aortic properties and cardiovascular diseases and mortality. A second model was developed to select MRI images suitable for analyzing the pulmonary artery.Part II focuses on decision support in nuclear cardiovascular imaging. A first machine learning model was developed to predict myocardial ischemia based on CTA variables. In addition, a deep neural network was used to identify reduced oxygen supply through the arteries supplying oxygen-rich blood to the heart and cardiovascular risk features using PET images.This thesis successfully explores the possibilities of machine learning and deep learning in cardiovascular research, with a focus on automated analysis and decision support

    Exploring the applicability of machine learning based artificial intelligence in the analysis of cardiovascular imaging

    Get PDF
    Worldwide, the prevalence of cardiovascular diseases has doubled, demanding new diagnostic tools. Artificial intelligence, especially machine learning and deep learning, offers innovative possibilities for medical research. Despite historical challenges, such as a lack of data, these techniques have potential for cardiovascular research. This thesis explores the application of machine learning and deep learning in cardiology, focusing on automation and decision support in cardiovascular imaging.Part I of this thesis focuses on automating cardiovascular MRI analysis. A deep learning model was developed to analyze the ascending aorta in cardiovascular MRI images. The model's results were used to investigate connections between genetic material and aortic properties, and between aortic properties and cardiovascular diseases and mortality. A second model was developed to select MRI images suitable for analyzing the pulmonary artery.Part II focuses on decision support in nuclear cardiovascular imaging. A first machine learning model was developed to predict myocardial ischemia based on CTA variables. In addition, a deep neural network was used to identify reduced oxygen supply through the arteries supplying oxygen-rich blood to the heart and cardiovascular risk features using PET images.This thesis successfully explores the possibilities of machine learning and deep learning in cardiovascular research, with a focus on automated analysis and decision support

    A Review on Explainable Artificial Intelligence for Healthcare: Why, How, and When?

    Full text link
    Artificial intelligence (AI) models are increasingly finding applications in the field of medicine. Concerns have been raised about the explainability of the decisions that are made by these AI models. In this article, we give a systematic analysis of explainable artificial intelligence (XAI), with a primary focus on models that are currently being used in the field of healthcare. The literature search is conducted following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) standards for relevant work published from 1 January 2012 to 02 February 2022. The review analyzes the prevailing trends in XAI and lays out the major directions in which research is headed. We investigate the why, how, and when of the uses of these XAI models and their implications. We present a comprehensive examination of XAI methodologies as well as an explanation of how a trustworthy AI can be derived from describing AI models for healthcare fields. The discussion of this work will contribute to the formalization of the XAI field.Comment: 15 pages, 3 figures, accepted for publication in the IEEE Transactions on Artificial Intelligenc
    corecore