1,278,253 research outputs found

    Global sensitivity analysis of the single particle lithium-ion battery model with electrolyte

    Get PDF
    The importance of global sensitivity analysis (GSA) has been well established in many scientific areas. However, despite its critical role in evaluating a model’s plausibility and relevance, most lithium ion battery models are published without any sensitivity analysis. In order to improve the lifetime performance of battery packs, researchers are investigating the application of physics based electrochemical models, such as the single particle model with electrolyte (SPMe). This is a challenging research area from both the parameter estimation and modelling perspective. One key challenge is the number of unknown parameters: the SPMe contains 31 parameters, many of which are themselves non-linear functions of other parameters. As such, relatively few authors have tackled this parameter estimation problem. This is exacerbated because there are no GSAs of the SPMe which have been published previously. This article addresses this gap in the literature and identifies the most sensitive parameter, preventing time being wasted on refining parameters which the output is insensitive to

    Global sensitivity analysis of computer models with functional inputs

    Get PDF
    Global sensitivity analysis is used to quantify the influence of uncertain input parameters on the response variability of a numerical model. The common quantitative methods are applicable to computer codes with scalar input variables. This paper aims to illustrate different variance-based sensitivity analysis techniques, based on the so-called Sobol indices, when some input variables are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary meta-modeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked Generalized Linear Models (GLM) or Generalized Additive Models (GAM). The ``mean'' model allows to estimate the sensitivity indices of each scalar input variables, while the ``dispersion'' model allows to derive the total sensitivity index of the functional input variables. The proposed approach is compared to some classical SA methodologies on an analytical function. Lastly, the proposed methodology is applied to a concrete industrial computer code that simulates the nuclear fuel irradiation

    Global Sensitivity Analysis of Stochastic Computer Models with joint metamodels

    Get PDF
    The global sensitivity analysis method, used to quantify the influence of uncertain input variables on the response variability of a numerical model, is applicable to deterministic computer code (for which the same set of input variables gives always the same output value). This paper proposes a global sensitivity analysis methodology for stochastic computer code (having a variability induced by some uncontrollable variables). The framework of the joint modeling of the mean and dispersion of heteroscedastic data is used. To deal with the complexity of computer experiment outputs, non parametric joint models (based on Generalized Additive Models and Gaussian processes) are discussed. The relevance of these new models is analyzed in terms of the obtained variance-based sensitivity indices with two case studies. Results show that the joint modeling approach leads accurate sensitivity index estimations even when clear heteroscedasticity is present

    Global sensitivity analysis for the boundary control of an open channel

    Full text link
    The goal of this paper is to solve the global sensitivity analysis for a particular control problem. More precisely, the boundary control problem of an open-water channel is considered, where the boundary conditions are defined by the position of a down stream overflow gate and an upper stream underflow gate. The dynamics of the water depth and of the water velocity are described by the Shallow Water equations, taking into account the bottom and friction slopes. Since some physical parameters are unknown, a stabilizing boundary control is first computed for their nominal values, and then a sensitivity anal-ysis is performed to measure the impact of the uncertainty in the parameters on a given to-be-controlled output. The unknown physical parameters are de-scribed by some probability distribution functions. Numerical simulations are performed to measure the first-order and total sensitivity indices
    corecore