5,395 research outputs found

    Measures of Variability for Bayesian Network Graphical Structures

    Full text link
    The structure of a Bayesian network includes a great deal of information about the probability distribution of the data, which is uniquely identified given some general distributional assumptions. Therefore it's important to study its variability, which can be used to compare the performance of different learning algorithms and to measure the strength of any arbitrary subset of arcs. In this paper we will introduce some descriptive statistics and the corresponding parametric and Monte Carlo tests on the undirected graph underlying the structure of a Bayesian network, modeled as a multivariate Bernoulli random variable. A simple numeric example and the comparison of the performance of some structure learning algorithm on small samples will then illustrate their use.Comment: 19 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:0909.168

    Efficient computational strategies to learn the structure of probabilistic graphical models of cumulative phenomena

    Full text link
    Structural learning of Bayesian Networks (BNs) is a NP-hard problem, which is further complicated by many theoretical issues, such as the I-equivalence among different structures. In this work, we focus on a specific subclass of BNs, named Suppes-Bayes Causal Networks (SBCNs), which include specific structural constraints based on Suppes' probabilistic causation to efficiently model cumulative phenomena. Here we compare the performance, via extensive simulations, of various state-of-the-art search strategies, such as local search techniques and Genetic Algorithms, as well as of distinct regularization methods. The assessment is performed on a large number of simulated datasets from topologies with distinct levels of complexity, various sample size and different rates of errors in the data. Among the main results, we show that the introduction of Suppes' constraints dramatically improve the inference accuracy, by reducing the solution space and providing a temporal ordering on the variables. We also report on trade-offs among different search techniques that can be efficiently employed in distinct experimental settings. This manuscript is an extended version of the paper "Structural Learning of Probabilistic Graphical Models of Cumulative Phenomena" presented at the 2018 International Conference on Computational Science
    corecore