13,380 research outputs found

    Hashing with binary autoencoders

    Full text link
    An attractive approach for fast search in image databases is binary hashing, where each high-dimensional, real-valued image is mapped onto a low-dimensional, binary vector and the search is done in this binary space. Finding the optimal hash function is difficult because it involves binary constraints, and most approaches approximate the optimization by relaxing the constraints and then binarizing the result. Here, we focus on the binary autoencoder model, which seeks to reconstruct an image from the binary code produced by the hash function. We show that the optimization can be simplified with the method of auxiliary coordinates. This reformulates the optimization as alternating two easier steps: one that learns the encoder and decoder separately, and one that optimizes the code for each image. Image retrieval experiments, using precision/recall and a measure of code utilization, show the resulting hash function outperforms or is competitive with state-of-the-art methods for binary hashing.Comment: 22 pages, 11 figure

    Efficient Semidefinite Branch-and-Cut for MAP-MRF Inference

    Full text link
    We propose a Branch-and-Cut (B&C) method for solving general MAP-MRF inference problems. The core of our method is a very efficient bounding procedure, which combines scalable semidefinite programming (SDP) and a cutting-plane method for seeking violated constraints. In order to further speed up the computation, several strategies have been exploited, including model reduction, warm start and removal of inactive constraints. We analyze the performance of the proposed method under different settings, and demonstrate that our method either outperforms or performs on par with state-of-the-art approaches. Especially when the connectivities are dense or when the relative magnitudes of the unary costs are low, we achieve the best reported results. Experiments show that the proposed algorithm achieves better approximation than the state-of-the-art methods within a variety of time budgets on challenging non-submodular MAP-MRF inference problems.Comment: 21 page

    Input Design for System Identification via Convex Relaxation

    Full text link
    This paper proposes a new framework for the optimization of excitation inputs for system identification. The optimization problem considered is to maximize a reduced Fisher information matrix in any of the classical D-, E-, or A-optimal senses. In contrast to the majority of published work on this topic, we consider the problem in the time domain and subject to constraints on the amplitude of the input signal. This optimization problem is nonconvex. The main result of the paper is a convex relaxation that gives an upper bound accurate to within 2/π2/\pi of the true maximum. A randomized algorithm is presented for finding a feasible solution which, in a certain sense is expected to be at least 2/π2/\pi as informative as the globally optimal input signal. In the case of a single constraint on input power, the proposed approach recovers the true global optimum exactly. Extensions to situations with both power and amplitude constraints on both inputs and outputs are given. A simple simulation example illustrates the technique.Comment: Preprint submitted for journal publication, extended version of a paper at 2010 IEEE Conference on Decision and Contro

    An exact solution method for binary equilibrium problems with compensation and the power market uplift problem

    Get PDF
    We propose a novel method to find Nash equilibria in games with binary decision variables by including compensation payments and incentive-compatibility constraints from non-cooperative game theory directly into an optimization framework in lieu of using first order conditions of a linearization, or relaxation of integrality conditions. The reformulation offers a new approach to obtain and interpret dual variables to binary constraints using the benefit or loss from deviation rather than marginal relaxations. The method endogenizes the trade-off between overall (societal) efficiency and compensation payments necessary to align incentives of individual players. We provide existence results and conditions under which this problem can be solved as a mixed-binary linear program. We apply the solution approach to a stylized nodal power-market equilibrium problem with binary on-off decisions. This illustrative example shows that our approach yields an exact solution to the binary Nash game with compensation. We compare different implementations of actual market rules within our model, in particular constraints ensuring non-negative profits (no-loss rule) and restrictions on the compensation payments to non-dispatched generators. We discuss the resulting equilibria in terms of overall welfare, efficiency, and allocational equity
    corecore