5,764 research outputs found

    The Secrets of Salient Object Segmentation

    Get PDF
    In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing salient object benchmarks, called the dataset design bias, by over emphasizing the stereotypical concepts of saliency. The dataset design bias does not only create the discomforting disconnection between fixations and salient object segmentation, but also misleads the algorithm designing. Based on our analysis, we propose a new high quality dataset that offers both fixation and salient object segmentation ground-truth. With fixations and salient object being presented simultaneously, we are able to bridge the gap between fixations and salient objects, and propose a novel method for salient object segmentation. Finally, we report significant benchmark progress on three existing datasets of segmenting salient objectsComment: 15 pages, 8 figures. Conference version was accepted by CVPR 201

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review

    Patch-type Segmentation of Voxel Shapes using Simplified Surface Skeletons

    Get PDF
    We present a new method for decomposing a 3D voxel shape into disjoint segments using the shape’s simplified surface-skeleton. The surface skeleton of a shape consists of 2D manifolds inside its volume. Each skeleton point has a maximally inscribed ball that touches the boundary in at least two contact points. A key observation is that the boundaries of the simplified fore- and background skeletons map one-to-one to increasingly fuzzy, soft convex, respectively concave, edges of the shape. Using this property, we build a method for segmentation of 3D shapes which has several desirable properties. Our method segments both noisy shapes and shapes with soft edges which vanish over low-curvature regions. Multiscale segmentations can be obtained by varying the simplification level of the skeleton. We present a voxel-based implementation of our approach and illustrate it on several realistic examples.
    • …
    corecore