3 research outputs found

    An Experimental Approach for Detecting Brain Tumor from MRI Images using Digital Image Processing Techniques in MatLab

    Get PDF
    The Digital Image Process plays a very important role in Medical Research and processing the MRI images. Using image processing techniques the MRI images can be used to detect and analysis the tumor growing in brain. SAR images are the high resolution images which cannot be collected manually. In this work, we identified the SAR images randomly from web with different region inclusions. The comparative results are generated against the statistical observations obtained for existing and proposed approach. The parameters considered are the mean value, standard deviation, entropy etc. The comparative results show that the method has improved the accuracy of region classification

    Automated brain tumour identification using magnetic resonance imaging:a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Automated brain tumor identification facilitates diagnosis and treatment planning. We evaluate the performance of traditional machine learning (TML) and deep learning (DL) in brain tumor detection and segmentation, using MRI. METHODS: A systematic literature search from January 2000 to May 8, 2021 was conducted. Study quality was assessed using the Checklist for Artificial Intelligence in Medical Imaging (CLAIM). Detection meta-analysis was performed using a unified hierarchical model. Segmentation studies were evaluated using a random effects model. Sensitivity analysis was performed for externally validated studies. RESULTS: Of 224 studies included in the systematic review, 46 segmentation and 38 detection studies were eligible for meta-analysis. In detection, DL achieved a lower false positive rate compared to TML; 0.018 (95% CI, 0.011 to 0.028) and 0.048 (0.032 to 0.072) (P < .001), respectively. In segmentation, DL had a higher dice similarity coefficient (DSC), particularly for tumor core (TC); 0.80 (0.77 to 0.83) and 0.63 (0.56 to 0.71) (P < .001), persisting on sensitivity analysis. Both manual and automated whole tumor (WT) segmentation had “good” (DSC ≥ 0.70) performance. Manual TC segmentation was superior to automated; 0.78 (0.69 to 0.86) and 0.64 (0.53 to 0.74) (P = .014), respectively. Only 30% of studies reported external validation. CONCLUSIONS: The comparable performance of automated to manual WT segmentation supports its integration into clinical practice. However, manual outperformance for sub-compartmental segmentation highlights the need for further development of automated methods in this area. Compared to TML, DL provided superior performance for detection and sub-compartmental segmentation. Improvements in the quality and design of studies, including external validation, are required for the interpretability and generalizability of automated models
    corecore