56,195 research outputs found

    Generation of cubic graphs and snarks with large girth

    Full text link
    We describe two new algorithms for the generation of all non-isomorphic cubic graphs with girth at least k5k\ge 5 which are very efficient for 5k75\le k \le 7 and show how these algorithms can be efficiently restricted to generate snarks with girth at least kk. Our implementation of these algorithms is more than 30, respectively 40 times faster than the previously fastest generator for cubic graphs with girth at least 6 and 7, respectively. Using these generators we have also generated all non-isomorphic snarks with girth at least 6 up to 38 vertices and show that there are no snarks with girth at least 7 up to 42 vertices. We present and analyse the new list of snarks with girth 6.Comment: 27 pages (including appendix

    Computing Graph Roots Without Short Cycles

    Get PDF
    Graph G is the square of graph H if two vertices x, y have an edge in G if and only if x, y are of distance at most two in H. Given H it is easy to compute its square H2, however Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph H (of girth 3). In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if G = H2 for some graph H of small girth. The main results are the following. - There is a graph theoretical characterization for graphs that are squares of some graph of girth at least 7. A corollary is that if a graph G has a square root H of girth at least 7 then H is unique up to isomorphism. - There is a polynomial time algorithm to recognize if G = H2 for some graph H of girth at least 6. - It is NP-complete to recognize if G = H2 for some graph H of girth 4. These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results generalize previous results on tree square roots, and provide polynomial time algorithms to compute a graph square root of small girth if it exists. Some open questions and conjectures will also be discussed

    The 4-girth-thickness of the complete multipartite graph

    Full text link
    The gg-girth-thickness θ(g,G)\theta(g,G) of a graph GG is the smallest number of planar subgraphs of girth at least gg whose union is GG. In this paper, we calculate the 44-girth-thickness θ(4,G)\theta(4,G) of the complete mm-partite graph GG when each part has an even number of vertices.Comment: 6 pages, 1 figur
    corecore