56,195 research outputs found
Generation of cubic graphs and snarks with large girth
We describe two new algorithms for the generation of all non-isomorphic cubic
graphs with girth at least which are very efficient for
and show how these algorithms can be efficiently restricted to generate snarks
with girth at least .
Our implementation of these algorithms is more than 30, respectively 40 times
faster than the previously fastest generator for cubic graphs with girth at
least 6 and 7, respectively.
Using these generators we have also generated all non-isomorphic snarks with
girth at least 6 up to 38 vertices and show that there are no snarks with girth
at least 7 up to 42 vertices. We present and analyse the new list of snarks
with girth 6.Comment: 27 pages (including appendix
Computing Graph Roots Without Short Cycles
Graph G is the square of graph H if two vertices x, y have an edge in G if
and only if x, y are of distance at most two in H. Given H it is easy to
compute its square H2, however Motwani and Sudan proved that it is NP-complete
to determine if a given graph G is the square of some graph H (of girth 3). In
this paper we consider the characterization and recognition problems of graphs
that are squares of graphs of small girth, i.e. to determine if G = H2 for some
graph H of small girth. The main results are the following. - There is a graph
theoretical characterization for graphs that are squares of some graph of girth
at least 7. A corollary is that if a graph G has a square root H of girth at
least 7 then H is unique up to isomorphism. - There is a polynomial time
algorithm to recognize if G = H2 for some graph H of girth at least 6. - It is
NP-complete to recognize if G = H2 for some graph H of girth 4. These results
almost provide a dichotomy theorem for the complexity of the recognition
problem in terms of girth of the square roots. The algorithmic and graph
theoretical results generalize previous results on tree square roots, and
provide polynomial time algorithms to compute a graph square root of small
girth if it exists. Some open questions and conjectures will also be discussed
The 4-girth-thickness of the complete multipartite graph
The -girth-thickness of a graph is the smallest number
of planar subgraphs of girth at least whose union is . In this paper, we
calculate the -girth-thickness of the complete -partite
graph when each part has an even number of vertices.Comment: 6 pages, 1 figur
- …
