230,425 research outputs found

    A fast algorithm for vision-based hand gesture recognition for robot control

    Get PDF
    We propose a fast algorithm for automatically recognizing a limited set of gestures from hand images for a robot control application. Hand gesture recognition is a challenging problem in its general form. We consider a fixed set of manual commands and a reasonably structured environment, and develop a simple, yet effective, procedure for gesture recognition. Our approach contains steps for segmenting the hand region, locating the fingers, and finally classifying the gesture. The algorithm is invariant to translation, rotation, and scale of the hand. We demonstrate the effectiveness of the technique on real imagery

    Wearable Capacitive-based Wrist-worn Gesture Sensing System

    Get PDF
    Gesture control plays an increasingly significant role in modern human-machine interactions. This paper presents an innovative method of gesture recognition using flexible capacitive pressure sensor attached on user’s wrist towards computer vision and connecting senses on fingers. The method is based on the pressure variations around the wrist when the gesture changes. Flexible and ultrathin capacitive pressure sensors are deployed to capture the pressure variations. The embedding of sensors on a flexible substrate and obtain the relevant capacitance require a reliable approach based on a microcontroller to measure a small change of capacitive sensor. This paper is addressing these challenges, collect and process the measured capacitance values through a developed programming on LabVIEW to reconstruct the gesture on computer. Compared to the conventional approaches, the wrist-worn sensing method offerings a low-cost, lightweight and wearable prototype on the user’s body. The experimental result shows that the potentiality and benefits of this approach and confirms that accuracy and number of recognizable gestures can be improved by increasing number of sensor

    Gesture Typing on Virtual Tabletop: Effect of Input Dimensions on Performance

    Get PDF
    The association of tabletop interaction with gesture typing presents interaction potential for situationally or physically impaired users. In this work, we use depth cameras to create touch surfaces on regular tabletops. We describe our prototype system and report on a supervised learning approach to fingertips touch classification. We follow with a gesture typing study that compares our system with a control tablet scenario and explore the influence of input size and aspect ratio of the virtual surface on the text input performance. We show that novice users perform with the same error rate at half the input rate with our system as compared to the control condition, that an input size between A5 and A4 present the best tradeoff between performance and user preference and that users' indirect tracking ability seems to be the overall performance limiting factor
    • …
    corecore