31,134 research outputs found
THE GERMANIUM EXTRACTION FROM TECHNOGENIC RAW MATERIALS BY MICROBIOLOGICAL METHODS
The results have practical significance and can be the basis for developing a unified
biotechnological method of technogenic waste processing with a purpose of their sterilization and
detoxification with simultaneous obtaining concentrates of valuable metals
Method of Fabricating Schottky Barrier solar cell
On a thin substrate of low cost material with at least the top surface of the substrate being electrically conductive is deposited a thin layer of heavily doped n-type polycrystalline germanium, with crystalline sizes in the submicron range. A passivation layer may be deposited on the substrate to prevent migration of impurities into the polycrystalline germanium. The polycrystalline germanium is recrystallized to increase the crystal sizes in the germanium layer to not less than 5 micros to serve as a base layer on which a thin layer of gallium arsenide is vapor epitaxially grown to a selected thickness. A thermally-grown oxide layer of a thickness of several tens of angstroms is formed on the gallium arsenide layer. A metal layer, of not more about 100 angstroms thick, is deposited on the oxide layer, and a grid electrode is deposited to be in electrical contact with the top surface of the metal layer. An antireflection coating may be deposited on the exposed top surface of the metal layer
The formation of mixed germanium–cobalt carbonyl clusters: an electrospray mass spectrometric study, and the structure of a high-nuclearity [Ge₂Co₁₀(CO)₂₄]²⁻ anion
The reaction of [µ₄-Ge{Co₂(CO)₇}₂] with [Co(CO)₄]⁻ has been monitored by electrospray mass spectrometry to detect the cluster anions generated. Conditions giving known mixed Ge–Co carbonyl clusters were established, and a new high nuclearity cluster anion, [Ge₂Co₁₀(CO)₂₄]²⁻ was detected. Conditions for its formation were optimised and it was subsequently isolated as its [Et₄N]⁺ salt and characterised by single-crystal X-ray crystallography. The Ge₂Co₁₀ cluster core has a novel geometry with the two germanium atoms in semi-encapsulated positions, forming seven formal Ge–Co bonds. There are also eighteen formal Co–Co bonds. Corresponding reactions of [µ₄-Si{Co₂(CO)₇}₂] with [Co(CO)₄]⁻ were also investigated
Novel metastable metallic and semiconducting germaniums
By means of ab initio metadynamics runs we explored the lower-pressure region
of the phase diagram of germanium. A monoclinic germanium phase with
four-membered rings, less dense than diamond and compressible into \beta-tin
phase (tI4) was found. A metallic bct-5 phase, mechanically stable down to room
conditions appeared between diamond and tI4. mC16 is a narrow-gap
semiconductor, while bct-5 is metallic and potentially still superconducting in
the very low pressure range. This finding may help resolving outstanding
experimental issues.Comment: 6 figure
Interface-driven phase separation in multifunctional materials: the case of GeMn ferromagnetic semiconductor
We use extensive first principle simulations to show the major role played by
interfaces in the mechanism of phase separation observed in semiconductor
multifunctional materials. We make an analogy with the precipitation sequence
observed in over-saturated AlCu alloys, and replace the Guinier-Preston zones
in this new context. A new class of materials, the phases, is proposed
to understand the formation of the coherent precipitates observed in the GeMn
system. The interplay between formation and interface energies is analyzed for
these phases and for the structures usually considered in the literature. The
existence of the alpha phases is assessed with both theoretical and
experimental arguments
Ge Nanowires Anode sheathed with Amorphous Carbon for Rechargeable Lithium batteries
Interdisciplinary School of Green EnergyThe composite electrode composed of single crystalline Ge NWs sheathed with amorphous carbon showed excellent electrochemical properties of large reversible capacity, high coulombic efficiency, excellent rate capability and stable cycle performance. c-Ge NWs synthesized by using thermal decomposition of C2H2 gas at 700 °C under Ar atmosphere after SLS (solution-liquid-solid) growth were found to have good performance during cycling with Li. The rate capability for charging was shown reversible capacity of 963 mAh/g with a coulombic efficiency of 90% and 700 mAh/g at the rate of 6C (= 4800mA/g). Capacity retention after 100 cycles was 72% at the rate of 0.5C. The improved electrochemical performance of c-Ge-NWs fabricated in our experiment was attributed to the formation of amorphous Ge NWs during cycling and a homogenous carbon coating on Ge NWs. Thus, these results suggest that the use of nanowires structure can be promising for alloy anode materials in lithium ion batteries
Photostrictive materials
Light-matter interactions that lead to nonthermal changes in size of the
sample constitute a photostrictive effect in many compounds. The photostriction
phenomenon was observed in four main groups of materials, ferroelectrics,
polar, and non-polar semiconductors, as well as in organic-based materials that
are reviewed here. The key mechanisms of photostriction and its dependence on
several parameters and perturbations are assessed. The major literature of the
photostriction is surveyed, and the review ends with a summary of the proposed
technical applications.Comment: Photostriction review, Photostrictive materials are summarized,
Photostrictive efficiency is described, 13 page
- …
