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Synopsis 

A high nuclearity cluster anion with semi-encapsulated germanium atoms within a 

Ge2Co10 core was prepared and structurally characterised, following initial detection by 

electrospray mass spectrometry. 

 

Abstract. 

The reaction of [4-Ge{Co2(CO)7}2] with [Co(CO)4]
-
 has been monitored by electrospray 

mass spectrometry to detect the cluster anions generated. Conditions giving known mixed 

Ge-Co carbonyl clusters were established, and a new high nuclearity cluster anion, 

[Ge2Co10(CO)24]
2-

 was detected. Conditions for its formation were optimised and it was 

subsequently isolated as its [Et4N]
+
 salt and characterised by single-crystal X-ray 

crystallography. The Ge2Co10 cluster core has a novel geometry with the two germanium 
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atoms in semi-encapsulated positions, forming seven formal Ge-Co bonds. There are also 

eighteen formal Co-Co bonds. Corresponding reactions of [4-Si{Co2(CO)7}2] with 

[Co(CO)4]
-
 were also investigated. 

Introduction. 

 The systematic synthesis of high-nuclearity metal carbonyl clusters is still a 

developing goal
1-3

. This is partly because the mechanisms of cluster-building reactions 

are poorly understood, since in situ monitoring of them is usually difficult. Carbonyl-

region infrared spectra of different species often overlap and provide little structural 

information for large clusters, while other techniques such as NMR are very limited. 

Determining reaction pathways has relied heavily on crystallising intermediate species 

from solutions and carrying out single-crystal structure analyses. Compounds 

characterised in this way are restricted to those that crystallise well, and may sometimes 

not be representative of the major species formed during reactions. 

 We have previously described reactions in which cobalt carbonyl clusters have 

been built up around the group 14 elements silicon and germanium as templates
4-11

. In 

particular, the reaction of [Co(CO)4]
-
 with [4-Ge{Co2(CO)7}2] (1), (which is formed

4
 in 

near-quantitative yield from GeH4 and Co2(CO)8) led
5,6

 to the isolation of two anionic 

clusters with four-coordinate germanium, 2 and 3, and one with five-coordinate 

germanium 4. In contrast, the corresponding reaction with [4-Si{Co2(CO)7}2] has only 

given the paramagnetic anion [SiCo9(CO)21]
2-

, still a unique example of a metal carbonyl 

cluster with a fully encapsulated silicon atom
7
. Indeed there are very few examples of 

encapsulated heavier group 14 atoms in discrete clusters, in contrast to the large number 

of carbido clusters. For germanium, the five-coordinate atoms in 4 and in the [Co4{4-
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GeCo(CO)4}2(CO)11] cluster 5 can be regarded as semi-encapsulated
5, 8

, with only 

[GeNi10(CO)20]
2-

 and [GeNi12 (CO)22]
2-

as fully encapsulated examples
12

. 

 Recently it has been demonstrated that the relatively new technique of electrospray 

mass spectrometry (ESMS) is useful for characterising metal carbonyl anions in 

solutions, since ions are transferred directly into the source with minimum 

fragmentation
13-16

.  Each mass spectral peak therefore corresponds to a distinct species. 

Most common solvents are tolerated so reaction mixtures can be sampled directly, and 

conditions can be arranged so that exposure to air is avoided. It is therefore potentially a 

powerful new technique for studying cluster syntheses reactions. An added advantage 

arises from the small samples needed -- reactions can be monitored on a very small scale. 

 We now report our re-examination of the [Co(CO)4]
-
/ [4-E{Co2(CO)7}2] reaction 

(E = Si or Ge) using ESMS methods, and the full characterisation of a novel, high-

nuclearity mixed metal cluster. 

Experimental 

 All reactions were carried out in re-distilled solvents under nitrogen, using standard 

Schlenk techniques. [4-Ge{Co2(CO)7}2], 1, [4-Si{Co2(CO)7}2], and Et4N[Co(CO)4] 

were prepared using literature procedures
4,5,9

. 

 Electrospray mass spectra were recorded on a VG Platform II spectrometer 

operating in negative ion mode. The mobile phase was 1,2-C2H4Cl2, which had been 

distilled from CaH2 under nitrogen and stored in a reservoir under an argon atmosphere. 

This was found to provide more consistent spectra than CH2Cl2 or CHCl3, possibly 

because of its lower volatility and smoother vaporisation in the electrospray source. The 

mobile phase was pumped at 0.02 mL min
-1

 using a SpectraPhysics P1000 pump. For 
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monitoring reactions, ca 0.5 mL samples of the mixture were extracted by syringe, 

diluted under argon with 1,2-C2H4Cl2, and injected into the spectrometer via a Rheodyne 

valve with a 10 L loop. The source temperature was 60C, and nitrogen was used as 

both nebulising and drying gas. Skimmer cone voltage was maintained at a low value 

(typically 5 V) to minimise fragmentation of ions. 

 Peaks were assigned from the m/z  values, and by comparison of the isotope 

envelope patterns with those simulated using the ISOTOPE program
18

. 

Small scale reactions monitored by ESMS.  A typical reaction used [4-Ge{Co2(CO)7}2] 

(0.030 g, 0.0.043 mmol) and Et4N[Co(CO)4] (0.026 g, 0.086 mmol) in either CH2Cl2 or 

Et2O ( 10 mL). If required, the mixtures were gently heated using an oil bath. Aliquots 

were removed at intervals and analysed by ESMS. 

Preparation of [Et4N]2[Ge2Co10(CO)24](6).  4-Ge{Co2(CO)7}2] (0.210 g, 0.30 mmol) 

and Et4N[Co(CO)4] (0.180 g, 0.60 mmol) were dissolved in CH2Cl2 (20 mL) and heated 

under reflux for 5-6 hours, by which time ESMS on an extracted aliquot showed the 

Ge2Co10 dianion 6 was the dominant species in solution. The mixture was concentrated to 

ca 5 mL under vacuum and Et2O was added dropwise to precipitate the product,  (0.199 

g, 38%). CO (CH2Cl2), 2066 m,sh, 2028 vs, br, 2007 m,sh 1730 w, br. Crystallographic 

quality crystals were obtained by layering a solution of the product in CH2Cl2 with Et2O 

and storing under nitrogen at -20C.  

X-ray crystal structure of [Et4N]2[Ge2Co10(CO)24].1.5CH2Cl2.0.5Et2O. 

Intensely red crystals were obtained as described above and one measuring 0.22 x 0.18 x 

0.12 mm was transferred on a glass fibre to the cold nitrogen stream of the diffractometer 

with minimum exposure to air. 
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Crystal data: C40H40Co10Ge2N2O24.1.5CH2Cl2.0.5(C2H5)2O, M = 1831.67, orthorhombic, 

a = 30.3922(6), b = 23.5597(5), c = 17.2684(3) Å, U 12364.7(4) Å
3
, T 203 K, space 

group Pcca, Z = 8, (Mo-K) 3.8 mm
-1

, 74629 reflections collected, 10909 unique (Rint 

0.0398) used after correction for absorption (Tmax, min 0.845, 0.649). Refinement on F
2
 

gave R1 0.0595 (9539 data with I > 2 (I)) and wR2 0.1618 (all data). The refinement was 

complicated by disorder in the [Et4N]
+
 cations, and a poorly resolved solvent molecule 

which was assigned to Et2O. 

Results and discussion 

Electrospray mass spectra 

 The course of the reaction between [4-Ge{Co2(CO)7}2] (1) and Et4N[Co(CO)4] is 

solvent-dependent.  In Et2O, there is a fairly rapid reaction to give the previously 

characterised
5
 [GeCo5(CO)16]

-
 cluster (4), as shown by the immediate growth of the peak 

at m/z  817. This species then slowly disappears, to be replaced by peaks at m/z  1047 and 

1147 which can be assigned to the known
6
 anions [GeCo7(CO)20]

-
 (3) and 

[Ge2Co2(CO)21]
-
 (2).  There are then few subsequent changes over several hours.  

 In CH2Cl2, there is no peak attributable to the [GeCo5(CO)16]
-
 ion 4 at any stage, 

with the two Co7 clusters 2 and 3 being the first ones observed. What is more interesting, 

is the subsequent decay of these two signals, with a new peak at m/z  704 arising from a 

doubly charged ion of mass 1408 (see Figure 1; there is also a weak peak at m/z 1408 

corresponding to the monocharged equivalent arising from oxidation in the mass 

spectrometer source). This can be assigned from the mass and distinctive isotope pattern 

to a species [Ge2Co10(CO)24]
2-

, (6), a previously undetected cluster. Monitoring of the 

reaction mixture on a larger scale allowed optimisation for the formation of this large 
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cluster, and subsequent isolation and full characterisation by X-ray crystallography (see 

below). 

 It should be emphasised that the information concerning the changes taking place 

during reaction is not available by means other than ESMS. Although the three smaller 

anions had been previously isolated and characterised
5,6

, they came from different 

reactions and the inter-relationships were never evident, and the large cluster was not 

even suspected. Infrared spectroscopy of the reaction mixture is not very helpful, all of 

the clusters 2-4, 6 giving one main broad band at around 2025 cm
-1

, with only minor 

differences in the weak bands distinguishing them; this is characteristic for large 

clusters
18

.  The information provided by ESMS is also complete, in that we can be 

confident that there are no other anionic species involved in significant quantities at any 

stage.  It should be noted that neutral compounds are invisible to the ESMS technique 

under the conditions used, so their involvement in the process needs to be deduced rather 

than detected. 

 To our knowledge, 6 is the first example where an unsuspected cluster anion has 

been first detected using ESMS and subsequently isolated and fully characterised. 

 The ESMS data allow us to rationalise the sequence of reactions, as summarised in 

Scheme 1. Initial addition of [Co(CO)4]
-
 to [4-Ge{Co2(CO)7}2] (1) (or to 

[(OC)4CoGeCo3(CO)9], 7, a known
4,19

 decarbonylation product of 1 under mild 

conditions) gives the GeCo5 cluster 4. This is apparently reasonably stable in Et2O but not 

in CH2Cl2. Breakdown of 4 would give rise to "Co2(CO)7",  (which would dimerise to 

generate [Co4(CO)12]), and a [GeCo3(CO)9]
-
 ion. This latter species is isoelectronic with 

the known [AsCo3(CO)9] which is a highly reactive Lewis base towards CO-displacement 
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reactions, including with itself to generate cyclic trimers
20

. By analogy, [GeCo3(CO)9]
-
 is 

expected to be a stable intermediate, but even more reactive as a Lewis base because of 

the negative charge. It is not detected by ESMS, but rapidly reacts with either 1 or 7 in 

the system to generate the Ge2Co7 anion 2 or with the [Co4(CO)12] formed to give the 

GeCo7 anion 3, both of which are indefinitely stable in Et2O solution.  In CH2Cl2 

however the cluster 2 releases more [GeCo3(CO)9]
-
 which adds to the GeCo7 anion 3 to 

give, after CO loss and condensation, the Ge2Co10 dianion 6.  

 Consistent with this, addition of PPh3 to a mixture of the two anions 2 and 3 

increases the rate of formation of 6. This is envisaged to involve reaction of 2 with PPh3 

according to Scheme 2, with the released [GeCo3(CO)9]
-
 reacting as before with 3. 

 This overall scheme can explain the specificity for the Ge2Co10 product 6, without 

any species of intermediate nuclearity. The suggestion of [GeCo3(CO)9]
- 
as a key building 

block can also explain the marked difference between the analogous reactions of [4-

Ge{Co2(CO)7}2] and [4-Si{Co2(CO)7}2] (see below); [GeCo3(CO)9]
- 
is formally Ge(II) 

so the analogous Si(II) species [SiCo3(CO)9]
- 
is presumably much less favoured as an 

intermediate. 

 The reaction of [4-Si{Co2(CO)7}2] with [Co(CO)4]
-
 differs from that found for the 

corresponding germanium system.  Initially (15-30 minutes) at reflux in CH2Cl2 the 

ESMS shows a peak at m/z 771 which can be assigned to the previously unknown 

[SiCo5(CO)16]
-
, presumably with the same structure as the analogous germanium species 

4. As the reaction proceeds a second anionic species with m/z 1029 is detected. 

Unambiguous assignment is complicated by Si and CO both having nominal mass of 28, 

so either [Si2Co7(CO)20]
- 
or [SiCo7(CO)21]

-
 are possible for this peak. There are subtle 
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differences for these in the detailed isotope pattern, with relative intensities100/33/16/4 

for the former and 100/29/12/2 for the latter, compared with the experimental ratio of 

100/33/16/5. These small differences tentatively favour the Si2Co7 option. On the other 

hand, the fact that subsequent cluster build-up leads to species with only one silicon atom 

would favour the SiCo7 option, since a sequence SiCoxSi2CoySiCoz is perhaps 

unlikely. Neither of the two species corresponds to any anions in the germanium system, 

and attempts to isolate crystals for further characterisation were unsuccessful, so the 

structure of this m/z 1029 species remains unknown. 

 As the reaction progresses further, two more anionic products form simultaneously, 

a dianion with m/z 573, and a monoanion with m/z 1175. These can be assigned with 

confidence to the previously characterised
7
 [SiCo9(CO)21]

2-
 and the previously unknown 

[SiCo9(CO)22]
-
. The latter is the electron-precise (130 CVE) version of the former, which 

is paramagnetic with 129 CVE, so will have the same capped square-antiprism core with 

an encapsulated silicon atom. It is not clear how the SiCo9 clusters form, but the ESMS 

results indicate unequivocally that this mono-capped square-antiprism core is the only 

higher-nuclearity cluster formed, with no sign of either a SiCo8 square-antiprism 

analogous to the carbido cluster
21

 [CCo8(CO)18]
2-

, nor a bi-capped square-antiprism 

analogous to the [ERh10(CO)22]
3-

 anions (E = P, As)
22

.  

 The silicon system does not give an analogue of the Ge2Co10 cluster 6, nor does the 

germanium system give a cluster corresponding to the SiCo9 core, emphasising the very 

different cluster building processes in these two similar systems. 

The structure of the [Ge2Co10(CO)24]
2-

 anion. 



 9 

 The asymmetric unit of the crystal lattice of the Et4N
+
 salt of the anion contains the 

anion 6, two cations, 1.5 molecules of CH2Cl2 and 0.5 molecules of Et2O, with significant 

disorder associated with the cations and solvent molecules.  However the anion itself is 

well-defined. 

 The overall structure of the anion is illustrated in Figure 2, with the Ge2Co10 core 

shown on Figure 3. The geometry of the cluster is unique, and cannot be readily classified 

in terms of the regular polyhedra normally associated with high-nuclearity clusters. It has 

essentially C2 symmetry with the axis passing through the mid-points of the Co(4)-Co(5) 

and Co(6)-Co(7) bonds, so the two germanium atoms are equivalent. Each forms six short 

Ge-Co bonds (2.346-2.406 Å) and one longer one (Ge(1)-Co(4) 2.611, Ge(2)-Co(5) 2.623 

Å), arranged so that one side of the germanium atoms is 'naked'. In this sense the 

germanium atoms can be regarded as semi-interstitial, with a similarity to the phosphorus 

atom in the cluster [PCo6(CO)16]
-
, reported earlier from Chini's group

23
. Semi-

encapsulated antimony atoms have recently been demonstrated in the [Ni31Sb4(CO)40]
6-

 

anion, with formal 8- and 10-connectivities
24

.  

 Within the Ge2Co10 cluster there are 18 formal Co-Co bonds ranging from 2.548-

2.853 Å. The 24 CO groups can be divided into sixteen terminal ones, four symmetrically 

bridging [CO(23), CO(42), CO(52), and CO(63)], and four semi-bridging [CO(11), 

CO(22), CO(81), and CO(91)], arranged so as to approximately maintain the overall C2 

symmetry. 

 The core geometry is not readily understood by any of the usual electron-counting 

schemes
25

. Including the germanium atoms as contributing 4 electrons to the total count, 

the anion has 148 cluster valence electrons, which gives 12 skeletal electron pairs for the 
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12 vertex structure.  With Wade's rules this would predict a mono-capped 11-vertex 

geometry, which is clearly not observed. 

 Another way of interpreting the core is to identify a central Ge2Co4 octahedron 

capped on four faces by Co(1), Co(2), Co(8) and Co(9), with two of the new faces further 

capped by Co(3) and Co(10). 

 It is interesting to compare the 148-electron [Ge2Co10(CO)24]
2-

 ion with other M10E2 

clusters.  When E is C or N, condensed structures with the main group elements fully 

encapsulated are the norm. For example, the recently reported
26

 142-electron 

[Co10N2(CO)19]
4-

 anion has a stacked trigonal prismatic arrangement with nitrogen atoms 

fully encapsulated in two of the three interstitial sites. A similar arrangement for the 

germanium example is presumably precluded by the size of the atom (r = 1.22 Å), too 

large to fit within a cavity made up from six cobalt atoms
27

. The 134-electron cluster 

[Os10S2(CO)23] is the only other M10E2 example we are aware of with heavier main group 

E elements.  This has a compact core of osmium atoms with the S atoms on the surface 

linked to only four Os atoms
28

, more as a four-electron ligand than as a semi-

encapsulated atom. 

Conclusion 

Electrospray mass spectrometry is a useful way of monitoring reaction progress in anion 

condensation reactions since it directly samples all species in solution. A detailed study 

of the [4-E{Co2(CO)7}2]/[Co(CO)4]
-
 systems has helped rationalise previous results, has 

highlighted differences for the E= Ge or Si examples, and has led to the discovery of a 

novel, high-nuclearity, mixed Ge-Co cluster anion 6 with an unprecedented core 

geometry. 
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Captions to figures 

 

Figure 1.  The electrospray mass spectrum of the anionic products observed in the 

reaction of [4-Si{Co2(CO)7}2] (1) with [Co(CO)4]
-
. Inset: isotope envelope for 

the peak centred at m/z 704 showing the 0.5 amu spacing associated with the 2- 

ion. 

 

Figure 2.  The structure of the [Ge2Co10(CO)24]
2-

 (6) ion, showing atom labelling. 

 

Figure 3.  The detailed structure of the metallic core of the [Ge2Co10(CO)24]
2-

 (6) ion 
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Table 1 

Metal-metal bond distances in the anion [Ge2Co10(CO)24]
2-

. 

Ge(1)-Co(1) 2.3940(12) Ge(2)-Co(4) 2.4055(13) 

Ge(1)-Co(2) 2.3662(13) Ge(2)-Co(6) 2.4026(13) 

Ge(1)-Co(3) 2.3890(12)  Ge(2)-Co(7) 2.3990(13) 

 Ge(1)-Co(5) 2.3643(12) Ge(2)-Co(8) 2.3765(13) 

 Ge(1)-Co(6) 2.3951(12) Ge(2)-Co(9) 2.3939(13) 

 Ge(1)-Co(7) 2.3971(13) Ge(2)-Co(10) 2.3463(13) 

Ge(1)-Co(4) 2.6107(13)  Ge(2)-Co(5) 2.6230(12)  

Co(1)-Co(2) 2.6701(15) Co(1)-Co(3) 2.8050(15) 

Co(1)-Co(4) 2.5645(14) Co(1)-Co(5) 2.7106(14) 

Co(2)-Co(3) 2.6688(15) Co(2)-Co(4) 2.6663(14) 

Co(2)-Co(7) 2.6454(14) Co(4)-Co(5) 2.6499(14) 

Co(4)-Co(7) 2.8137(14) Co(4)-Co(9) 2.6677(14)  

Co(5)-Co(6) 2.8194(14) Co(5)-Co(8) 2.6412(14)  

Co(5)-Co(9) 2.5477(14) Co(6)-Co(7) 2.8526(14) 

Co(6)-Co(8) 2.6507(14) Co(8)-Co(9) 2.7052(14) 

Co(8)-Co(10) 2.7104(14) Co(9)-Co(10) 2.7514(14) 



 17 

 

 

 

 

 

 

 

 

 

 

 

 

 

Co

Co

GeCo

Co

Co

Co

Co
Ge

Co

CoCo

(6)



 18 

 

 

 

(OC)3Co Co(CO)2

(OC)3Co Co(CO)2

Ge

Ge

Co(CO)4

Co(CO)4

(5)

CO



 19 

 

CO

Co
(CO)3

(CO)3
Co

CO

Co
(CO)3

(CO)3
Co

Ge

O
C

Co(CO)3(OC)3Co

Co
(CO)3

(OC)3Co Co(CO)3

Ge

Co
(CO)3

(OC)3Co Co(CO)3

Ge

:

Co
(CO)3

(OC)3Co Co(CO)3

Ge

Co(CO)4

+ "Co2(CO)7"

Co
(CO)3

(OC)3Co Co(CO)3

Ge

Co(CO)3

(CO)3
Co

Co(CO)3(OC)3Co

Ge

Co
(CO)2

(OC)3Co Co(CO)2

(OC)Co

(CO)3
Co

Co(CO)3(OC)3Co

Ge

CO

CO

CO

(1)

(4)

m/z 817

(7)

(2) (3)

m/z 1147 m/z 1047

(6)

m/z 714

Co4(CO)12

_

_

_

_

[Ge2Co10(CO)24]
2-

[Co(CO)4]
-

- 2CO

- CO

[C
o(

C
O

) 4
]
-

- C
O

- CO

- 2CO

- CO

- 5CO



 20 

 

 


