30,805 research outputs found

    Parametric Polyhedra with at least kk Lattice Points: Their Semigroup Structure and the k-Frobenius Problem

    Full text link
    Given an integral d×nd \times n matrix AA, the well-studied affine semigroup \mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be stratified by the number of lattice points inside the parametric polyhedra PA(b)={x:Ax=b,x≥0}P_A(b)=\{x: Ax=b, x\geq0\}. Such families of parametric polyhedra appear in many areas of combinatorics, convex geometry, algebra and number theory. The key themes of this paper are: (1) A structure theory that characterizes precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{ Sg}(A) such that PA(b)∩ZnP_A(b) \cap {\mathbb Z}^n has at least kk solutions. We demonstrate that this set is finitely generated, it is a union of translated copies of a semigroup which can be computed explicitly via Hilbert bases computations. Related results can be derived for those right-hand-side vectors bb for which PA(b)∩ZnP_A(b) \cap {\mathbb Z}^n has exactly kk solutions or fewer than kk solutions. (2) A computational complexity theory. We show that, when nn, kk are fixed natural numbers, one can compute in polynomial time an encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function, using a short sum of rational functions. As a consequence, one can identify all right-hand-side vectors of bounded norm that have at least kk solutions. (3) Applications and computation for the kk-Frobenius numbers. Using Generating functions we prove that for fixed n,kn,k the kk-Frobenius number can be computed in polynomial time. This generalizes a well-known result for k=1k=1 by R. Kannan. Using some adaptation of dynamic programming we show some practical computations of kk-Frobenius numbers and their relatives

    Tropical Principal Component Analysis and its Application to Phylogenetics

    Get PDF
    Principal component analysis is a widely-used method for the dimensionality reduction of a given data set in a high-dimensional Euclidean space. Here we define and analyze two analogues of principal component analysis in the setting of tropical geometry. In one approach, we study the Stiefel tropical linear space of fixed dimension closest to the data points in the tropical projective torus; in the other approach, we consider the tropical polytope with a fixed number of vertices closest to the data points. We then give approximative algorithms for both approaches and apply them to phylogenetics, testing the methods on simulated phylogenetic data and on an empirical dataset of Apicomplexa genomes.Comment: 28 page

    FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension

    Full text link
    We show the existence of a fully polynomial-time approximation scheme (FPTAS) for the problem of maximizing a non-negative polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed. Moreover, using a weaker notion of approximation, we show the existence of a fully polynomial-time approximation scheme for the problem of maximizing or minimizing an arbitrary polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed.Comment: 16 pages, 4 figures; to appear in Mathematical Programmin

    Subsystem constraints in variational second order density matrix optimization: curing the dissociative behavior

    Get PDF
    A previous study of diatomic molecules revealed that variational second-order density matrix theory has serious problems in the dissociation limit when the N-representability is imposed at the level of the usual two-index (P, Q, G) or even three-index (T1, T2) conditions [H. van Aggelen et al., Phys. Chem. Chem. Phys. 11, 5558 (2009)]. Heteronuclear molecules tend to dissociate into fractionally charged atoms. In this paper we introduce a general class of N-representability conditions, called subsystem constraints, and show that they cure the dissociation problem at little additional computational cost. As a numerical example the singlet potential energy surface of BeB+ is studied. The extension to polyatomic molecules, where more subsystem choices can be identified, is also discussed.Comment: published version;added reference

    Complexity of short Presburger arithmetic

    Full text link
    We study complexity of short sentences in Presburger arithmetic (Short-PA). Here by "short" we mean sentences with a bounded number of variables, quantifiers, inequalities and Boolean operations; the input consists only of the integers involved in the inequalities. We prove that assuming Kannan's partition can be found in polynomial time, the satisfiability of Short-PA sentences can be decided in polynomial time. Furthermore, under the same assumption, we show that the numbers of satisfying assignments of short Presburger sentences can also be computed in polynomial time

    Finding Multiple Solutions in Nonlinear Integer Programming with Algebraic Test-Sets

    Get PDF
    We explain how to compute all the solutions of a nonlinear integer problem using the algebraic test-sets associated to a suitable linear subproblem. These test-sets are obtained using Gröbner bases. The main advantage of this method, compared to other available alternatives, is its exactness within a quite good efficiency.Ministerio de Economía y Competitividad MTM2016-75024-PMinisterio de Economía y Competitividad MTM2016-74983-C2- 1-RJunta de Andalucía P12-FQM-269
    • …
    corecore