807,587 research outputs found

    Instanton moduli spaces on non-K\"ahlerian surfaces. Holomorphic models around the reduction loci

    Full text link
    Let M\mathcal{M} be a moduli space of polystable rank 2-bundles bundles with fixed determinant (a moduli space of PU(2)\mathrm{PU}(2)-instantons) on a Gauduchon surface with pg=0p_g=0 and b1=1b_1=1. We study the holomorphic structure of M\mathcal{M} around a circle T\mathcal{T} of regular reductions. Our model space is a "blowup flip passage", which is a manifold with boundary whose boundary is a projective fibration, and whose interior comes with a natural complex structure. We prove that a neighborhood of the boundary of the blowup M^T\hat{\mathcal{M}}_{\mathcal{T}} of M\mathcal{M} at T\mathcal{T} can be smoothly identified with a neighborhood of the boundary of a "flip passage" Q^\hat Q, the identification being holomorphic on int(Q^)\mathrm{int}(\hat Q).Comment: 30 page

    Exceptional quantum geometry and particle physics

    Get PDF
    Based on an interpretation of the quark-lepton symmetry in terms of the unimodularity of the color group SU(3)SU(3) and on the existence of 3 generations, we develop an argumentation suggesting that the "finite quantum space" corresponding to the exceptional real Jordan algebra of dimension 27 (the Euclidean Albert algebra) is relevant for the description of internal spaces in the theory of particles. In particular, the triality which corresponds to the 3 off-diagonal octonionic elements of the exceptional algebra is associated to the 3 generations of the Standard Model while the representation of the octonions as a complex 4-dimensional space C⊕C3\mathbb C\oplus\mathbb C^3 is associated to the quark-lepton symmetry, (one complex for the lepton and 3 for the corresponding quark). More generally it is is suggested that the replacement of the algebra of real functions on spacetime by the algebra of functions on spacetime with values in a finite-dimensional Euclidean Jordan algebra which plays the role of "the algebra of real functions" on the corresponding almost classical quantum spacetime is relevant in particle physics. This leads us to study the theory of Jordan modules and to develop the differential calculus over Jordan algebras, (i.e. to introduce the appropriate notion of differential forms). We formulate the corresponding definition of connections on Jordan modules.Comment: 37 pages ; some minor typo corrections. To appear in Nucl. Pays. B (2016), http://dx.doi.org/10.1016/j.nuclphysb.2016.04.01
    • …
    corecore