3,873 research outputs found

    Geometry of discrete and continuous bounded surfaces

    Get PDF
    We work on reconstructing discrete and continuous surfaces with boundaries using length constraints. First, for a bounded discrete surface, we discuss the rigidity and number of embeddings in three-dimensional space, modulo rigid transformations, for given real edge lengths. Our work mainly considers the maximal number of embeddings of rigid graphs in three-dimensional space for specific geometries (annulus, strip). We modify a commonly used semi-algebraic, geometrical formulation using Bézout\u27s theorem, from Euclidean distances corresponding to edge lengths. We suggest a simple way to construct a rigid graph having a finite upper bound. We also implement a generalization of counting embeddings for graphs by segmenting multiple rigid graphs in d-dimensional space. Our computational methodology uses vector and matrix operations and can work best with a relatively small number of points

    Surface embedding, topology and dualization for spin networks

    Full text link
    Spin networks are graphs derived from 3nj symbols of angular momentum. The surface embedding, the topology and dualization of these networks are considered. Embeddings into compact surfaces include the orientable sphere S^2 and the torus T, and the not orientable projective space P^2 and Klein's bottle K. Two families of 3nj graphs admit embeddings of minimal genus into S^2 and P^2. Their dual 2-skeletons are shown to be triangulations of these surfaces.Comment: LaTeX 17 pages, 6 eps figures (late submission to arxiv.org

    On the maximal number of real embeddings of minimally rigid graphs in R2\mathbb{R}^2, R3\mathbb{R}^3 and S2S^2

    Get PDF
    Rigidity theory studies the properties of graphs that can have rigid embeddings in a euclidean space Rd\mathbb{R}^d or on a sphere and which in addition satisfy certain edge length constraints. One of the major open problems in this field is to determine lower and upper bounds on the number of realizations with respect to a given number of vertices. This problem is closely related to the classification of rigid graphs according to their maximal number of real embeddings. In this paper, we are interested in finding edge lengths that can maximize the number of real embeddings of minimally rigid graphs in the plane, space, and on the sphere. We use algebraic formulations to provide upper bounds. To find values of the parameters that lead to graphs with a large number of real realizations, possibly attaining the (algebraic) upper bounds, we use some standard heuristics and we also develop a new method inspired by coupler curves. We apply this new method to obtain embeddings in R3\mathbb{R}^3. One of its main novelties is that it allows us to sample efficiently from a larger number of parameters by selecting only a subset of them at each iteration. Our results include a full classification of the 7-vertex graphs according to their maximal numbers of real embeddings in the cases of the embeddings in R2\mathbb{R}^2 and R3\mathbb{R}^3, while in the case of S2S^2 we achieve this classification for all 6-vertex graphs. Additionally, by increasing the number of embeddings of selected graphs, we improve the previously known asymptotic lower bound on the maximum number of realizations. The methods and the results concerning the spatial embeddings are part of the proceedings of ISSAC 2018 (Bartzos et al, 2018)

    Monotone Maps, Sphericity and Bounded Second Eigenvalue

    Get PDF
    We consider {\em monotone} embeddings of a finite metric space into low dimensional normed space. That is, embeddings that respect the order among the distances in the original space. Our main interest is in embeddings into Euclidean spaces. We observe that any metric on nn points can be embedded into l2nl_2^n, while, (in a sense to be made precise later), for almost every nn-point metric space, every monotone map must be into a space of dimension Ω(n)\Omega(n). It becomes natural, then, to seek explicit constructions of metric spaces that cannot be monotonically embedded into spaces of sublinear dimension. To this end, we employ known results on {\em sphericity} of graphs, which suggest one example of such a metric space - that defined by a complete bipartitegraph. We prove that an δn\delta n-regular graph of order nn, with bounded diameter has sphericity Ω(n/(λ2+1))\Omega(n/(\lambda_2+1)), where λ2\lambda_2 is the second largest eigenvalue of the adjacency matrix of the graph, and 0 < \delta \leq \half is constant. We also show that while random graphs have linear sphericity, there are {\em quasi-random} graphs of logarithmic sphericity. For the above bound to be linear, λ2\lambda_2 must be constant. We show that if the second eigenvalue of an n/2n/2-regular graph is bounded by a constant, then the graph is close to being complete bipartite. Namely, its adjacency matrix differs from that of a complete bipartite graph in only o(n2)o(n^2) entries. Furthermore, for any 0 < \delta < \half, and λ2\lambda_2, there are only finitely many δn\delta n-regular graphs with second eigenvalue at most λ2\lambda_2
    corecore