2,473 research outputs found

    A flexible sensor technology for the distributed measurement of interaction pressure

    Get PDF
    We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted

    A 6 DEGREES OF FREEDOM KINEMATICAL MODEL OF THE KNEE FOR THE DESIGN OF A NEW REHABILITATION DEVICE

    Get PDF
    International audienceIsokinetics devices are widely used in the field of knee rehabilitation. This kind of apparatus often solicits the knee joint in the sagittal plane with one degree of freedom. With the development of exoskeletons and intelligent prostheses, more precise control applications to assistive robotics for rehabilitation are possible. Our aim is to design a new apparatus for the 3 dimensional control of knee joint movements for sports training and rehabilitation. The first step to design such apparatus is to specify its kinematics. This paper presents a kinematical model of the knee joint that will be employed to specify the future Device kinematics and a preliminary control scheme

    A prototype of an Electronic Pegboard Test to measure Hand-Time Dexterity with impaired hand functionality

    Get PDF
    This paper proposes an electronic prototype of the Grooved Pegboard Test (GPT), which is normally used to test the presence of hand dexterity. The prototype imitates the geometrical dimensions of an on-the-market GPT device, but it is electronic, not manual like the one available now for users. The suggested electronic GPT device makes automated time calculation between placing the first and the last peg in their designated locations, instead of manually observing a stopwatch normally used during the GPT. The electronic GPT prototype consists of a fabricated wooden box, electronics (switches and microcontroller), and liquid crystal display (LCD). A set of 40 normal volunteers, 20 females and 20 males, tested the designed prototype. A set of six volunteers with chronic medical conditions also participated in evaluating the proposed model. The results on normal volunteers showed that the proposed electronic GPT device yielded time calculations that match the population mean value of similar calculations by the GPT device. The one-sample t-test showed no significant difference in calculations between the new electronic GPT and the manual GPT device. The p-value was much higher than 0.05, indicating the possible use of the suggested electronic GPT device
    • …
    corecore