4 research outputs found

    Automatic tolerance inspection through Reverse Engineering: a segmentation technique for plastic injection moulded parts

    Get PDF
    This work studies segmentations procedures to recognise features in a Reverse Engineering (RE) application that is oriented to computer-aided tolerance inspection of injection moulding die set-up, necessary to manufacture electromechanical components. It will discuss all steps of the procedures, from the initial acquisition to the final measure data management, but specific original developments will be focused on the RE post-processing method, that should solve the problem related to the automation of the surface recognition and then of the inspection process. As it will be explained in the first two Chapters, automation of the inspection process pertains, eminently, to feature recognition after the segmentation process. This work presents a voxel-based approach with the aim of reducing the computation efforts related to tessellation and curvature analysis, with or without filtering. In fact, a voxel structure approximates the shape through parallelepipeds that include small sub-set of points. In this sense, it represents a filter, since the number of voxels is less than the total number of points, but also a local approximation of the surface, if proper fitting models are applied. Through sensitivity analysis and industrial applications, limits and perspectives of the proposed algorithms are discussed and validated in terms of accuracy and save of time. Validation case-studies are taken from real applications made in ABB Sace S.p.A., that promoted this research. Plastic injection moulding of electromechanical components has a time-consuming die set-up. It is due to the necessity of providing dies with many cavities, which during the cooling phase may present different stamping conditions, thus defects that include lengths outside their dimensional tolerance, and geometrical errors. To increase the industrial efficiency, the automation of the inspection is not only due to the automatic recognition of features but also to a computer-aided inspection protocol (path planning and inspection data management). For this reason, also these steps will be faced, as the natural framework of the thesis research activity. The work structure concerns with six chapters. In Chapter 1, an introduction to the whole procedure is presented, focusing on reasons and utilities of the application of RE techniques in industrial engineering. Chapter 2 analyses acquisition issues and methods that are related to our application, describing: (a) selected hardware; (b) adopted strategy related to the cloud of point acquisition. In Chapter 3, the proposed RE post-processing is described together with a state of art about data segmentation and surface reconstruction. Chapter 4 discusses the proposed algorithms through sensitivity studies concerning thresholds and parameters utilised in segmentation phase and surface reconstruction. Chapter 5 explains briefly the inspection workflow, PDM requirements and solution, together with a preliminary assessing of measures and their reliability. These three chapters (3, 4 and 5) report final sections, called “Discussion”, in which specific considerations are given. Finally, Chapter 6 gives examples of the proposed segmentation technique in the framework of the industrial applications, through specific case studies

    Advanced Techniques for Design and Manufacturing in Marine Engineering

    Get PDF
    Modern engineering design processes are driven by the extensive use of numerical simulations; naval architecture and ocean engineering are no exception. Computational power has been improved over the last few decades; therefore, the integration of different tools such as CAD, FEM, CFD, and CAM has enabled complex modeling and manufacturing problems to be solved in a more feasible way. Classical naval design methodology can take advantage of this integration, giving rise to more robust designs in terms of shape, structural and hydrodynamic performances, and the manufacturing process.This Special Issue invites researchers and engineers from both academia and the industry to publish the latest progress in design and manufacturing techniques in marine engineering and to debate the current issues and future perspectives in this research area. Suitable topics for this issue include, but are not limited to, the following:CAD-based approaches for designing the hull and appendages of sailing and engine-powered boats and comparisons with traditional techniques;Finite element method applications to predict the structural performance of the whole boat or of a portion of it, with particular attention to the modeling of the material used;Embedded measurement systems for structural health monitoring;Determination of hydrodynamic efficiency using experimental, numerical, or semi-empiric methods for displacement and planning hulls;Topology optimization techniques to overcome traditional scantling criteria based on international standards;Applications of additive manufacturing to derive innovative shapes for internal reinforcements or sandwich hull structures
    corecore