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Abstract 

Techniques to rapidly model local spaces, using 3D range data can enable implementation 

of: (1) real-time obstacle avoidance for improved safety, (2) advanced automated equipment 

control modes, and (3) as-built data acquisition for improved quantity tracking, engineering, and 

project control systems.  The objective of the research reported here was to develop rapid local 

spatial modeling tools.  Algorithms for fitting sparse range point clouds to geometric primitives 

such as spheres, cylinders, and cuboids have been developed as well as methods for merging 

primitives into assemblies. Results of experiments are presented and practical usage and 

limitations are discussed.  

Keywords: Sparse range point clouds, 3D workspace modeling, Fitting and matching objects, 

Merging objects 
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Introduction 

Graphical workspace modeling can bring about improvements in safety while at the same 

time lessening the need for skilled workers to operate heavy equipment under a wide range of 

working conditions. There are two general modes in which graphical workspace modeling can be 

applied for equipment operations: (1) as interactive visual feedback while a piece of heavy 

equipment is being operated, or (2) as a tool for 3D graphical simulation. In the latter case, 

application of such a modeling technique can ultimately contribute to an equipment operator’s 

sense of whether—and how—he/she should move before actually proceeding to do so. Research 

indicates that several different classes of operations that are performed on construction sites, such 

as earth moving, heavy lifting, and material handling, can be performed more safely and 

effectively by using graphical models of both the equipment and the workspace [3, 4, 11, 12, 15, 

17, 18, 24].  Such advantages are further leveraged when applied to remote operations such as 

excavation in cofferdams and work below ground.  

Three-dimensional laser-scanning systems are becoming popular tools for generating 3D 

models of construction sites [3]. These large, expensive range scanners (typically costing $30k–

$100k apiece) are placed at various positions around the scene so that dense range-point clouds 

can be obtained from each view. Then, the individual range-point clouds are merged into a single, 

registered, comprehensive point cloud.  Heuristic methods are used to extract the geometric 

information: edges, surfaces, features, etc. [19].  This is a time-consuming operation, since the 

algorithms often fail to completely and accurately represent the entire point cloud. As a result, 

human intervention is needed to redirect the algorithm and manually finish the task where the 

algorithm left off [22].  While these methods can produce very detailed models of the scanned 
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scene, which are useful for obtaining as-built drawings of existing structures, the burdens that 

they impose in terms of computation and data-acquisition time generally preclude the use of these 

types of laser systems on-site for real-time decision-making. Modeling times for these laser range 

scanners can be on the order of hours or even days.  In addition, it is virtually impossible to 

perform automated path planning based on their output because of the exorbitant computational 

cost of considering each point of a surface in the vicinity of the equipment being used for such a 

task [9]. 

The dynamic nature of the construction environment requires not only that a real-time 

local-area modeling system be fast but also that it be capable of dealing with uncertainty and 

adjusting to changes in the work environment.  The ability to cope with uncertainty is very 

important and is being recognized as the next logical step in the robotics field as well [2].  The 

aim of the research reported is to contribute elements to a method of rapid 3D workspace 

modeling that achieves an acceptable balance between the degree of human judgment required for 

its use and the efficiency of acquisition of the range data. Such an approach is expected to bring 

about reductions in both computational costs and processing time, and lead to a cost-effective 

robust approach suitable for field deployment and eventual commercialization.  

Rapid 3D Modeling on Construction Sites 

Characteristics of Rapid 3D Modeling  

For effective rapid 3D workspace modeling, three dominant issues need to be considered: 

(1) types of range point cloud data and their acquisition, (2) the role and application of human 

judgment, and (3) efficient workspace representations. 
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Types of Range Point Cloud Data and Their Acquisition 

Most workspace modeling applications in the construction industry use dense point cloud 

data (Cyrax, NIST, and Carnegie Mellon University). An outstanding example is a laser scanning 

system of Cyra Corporation that extracts 3D data points of the work environment and involves a 

semi-manually assisted 3D model regeneration method using point clouds [5]. Cyrax combines a 

high resolution distance measurement sensor with software that creates 2D drawings and 3D 

models that are exportable for industry standard CAD and graphical modeling (IGES, AutoCAD, 

DXF, Microstation DGN, ASCII, BMP, and JPEG). Another prominent 3D laser-scanning system, 

LADAR (for Laser Distance and Ranging), is being developed by the National Institute of 

Standards and Technology (NIST) for use in applications such as automated determination of 

operations to be performed by earth-moving equipment, 3D as-built modeling of construction 

sites, and material tracking systems [3, 25, 26]. Finally, the Robotics Institute at Carnegie Mellon 

University developed an application for laser range scanners which is an autonomous loading 

system [24], which uses two scanning-laser rangefinders: one to recognize and localize the truck, 

and the other to measure the soil face. 

Although these systems’ scanning process provides more precise as-built 3D models 

relatively faster than other traditional manual measurement and design systems, they still require 

days or weeks for the modeling process due to their data densities [20].  Such computationally 

intensive processing approaches may render the dense point cloud approach prohibitive with 

respect to real-time applications in the construction industry. An alternative approach based on 

objective driven data acquisition would target individual objects and clusters of objects, and scan 

them with the minimum number of range points required in practice to model them accurately 

and efficiently. This approach is termed “sparse” range point clouds approach here and in [16, 19]. 
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In contrast to full area, “dense”, range point scanning, the use of sparse clouds requires on the 

order of minutes for data acquisition and local area 3D modeling.   

The Role and Application of Human Judgment  

As opposed to fully autonomous systems [8, 13, 14], humans are adept at recognizing 

objects, especially in cluttered scenes such as construction sites [14].  By incorporating human 

perception into the overall modeling enterprise, an objective driven, sparse point clouds approach  

has the potential to reduce not only the data-acquisition time but also the need for processing that 

is computationally intensive and/or expensive [4, 19].  Therefore, integration of the decision-

making ability of a human operator with the capability of a robot to carry out certain tasks semi-

automatically may be more practical than use of full automation on construction sites [6].  Figure 

1 shows comparison between the objective driven data acquisition approach of the research 

reported here and fully automated data acquisition that is more characteristic of existing 

approaches. 

 
Figure 1: Comparison between objective driven data acquisition and fully automated data acquisition 
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Efficient Workspace Representation 

In heavy-equipment operations, existence of a detailed local model is not critical.  For 

example, in applications such as real-time obstacle avoidance, a set of simple polygons is most 

feasible.  Neugebauer suggested that modeling of peripheral environments not directly related to 

a robot’s task could be simplified by using a limited number of polygons, whereas workpieces 

actually handled by a robot should be modeled in more detail. The level of intricacy involved in 

operating the equipment should be considered in determining the level of detail needed for 

abstraction [21].  Thus, it is proposed that for objects that are not directly related to any 

equipment task, but still need to be modeled for purposes of obstacle avoidance or of heavy-

equipment operation (Peripheral Environment), bounding algorithms can be employed to create 

models that completely encompass objects within the immediate environment without 

appreciable loss of workspace volume. For objects that are closely related to some task that is to 

be performed by the equipment (Target Objects), object fitting-matching-merging algorithms can 

be used to extract precise geometrical information from workplace scenes.  

Comparison of Spatial Data Acquisition Techniques for World Space Modeling  

The use of LADAR (Cyra and Carnegie Mellon University), FLASH LADAR (NIST), 

sparse point cloud and RFID systems lead to methods that achieve different results with different 

characteristics.  It is useful to compare these methods using four main criteria related to the 

modeling potential of each:  

• Precision and Accuracy:  how well the model fits the original scene. 

• Richness of the model derived with the approach:  in terms of quantity and quality of 

information incorporated. 

• Frequency of derived model updating 
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• Density of data used for modeling 

Figure 2 roughly compares existing methods according to these criteria.  While LADAR 

and RFID based systems are either very precise but slow, or fast but inaccurate, the sparse range 

point cloud method tends to achieve a compromise that is useful for some real-time field 

applications. It would probably be an order of magnitude less expensive than a LADAR or 

FLASH LADAR based approach. 

 
Figure 2: The Sparse Range Point Method in the world of Space Modeling 

 

Process of Rapid 3D Modeling  

For rapid local area 3D modeling using sparse range point clouds a process is followed as 

illustrated in Figure 3.  This paper focuses on algorithms developed to execute the object 

modeling branch of the process flow chart (left hand column).  The planar boundary and object 
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cluster modeling algorithms are described in McLaughlin, 2003 [19].  Combined, these processes 

lead to an efficient representation of the local work space. The range points are acquired using an 

inexpensive single axis laser range finder mounted on a pan & tilt unit. 

 
Figure 3: Process of Workspace Modeling 

 

Target Objects & Human-Assisted Rapid 3D Workspace Modeling 

With respect to the geometric primitives most frequently encountered in a construction 

site, a few types of objects can be used to model a wide range of construction scenes. Planar 

surfaces can be used for walls, ceilings, floors and other planar surfaced objects. Cuboids can be 
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used for fitting and matching structural objects such as columns, box-beams, and finishing 

objects. Cylinders can be used to fit and match chemical pipes, ventilation pipes, and concrete 

piles. Fitting and matching algorithms for cuboids and cylinders are presented and its experiments 

are discussed.  Merging algorithms which is often required to represent target objects are also 

presented.  

Primitives Fitting and Matching 

Cuboids: 

A bounded cuboid is described by a set of vertex points vp= {a, b, c, d, e, f, g, h}, and is 

composed of 6 surfaces.  A bounded plane, one of the cuboid’s six surfaces, is represented by a 

set of parameters p = {p1, p2, p3, p4} that defines a plane, and a set of edge points, E, that lies in 

the plane and describes the vertices of the plane’s boundary.  The cuboid fitting method is used to 

find parameters for surfaces such as normals of all planes and vertex points.  The cuboid method 

consists of four steps (Figure 6, 7, 8, 9, 10 and 11 show the results of the method step by step for 

a real object): 

1) The K-nearest neighbors algorithm is used to segment points onto each surface of the 

cuboid.  This algorithm finds the nearest two points in a 3D space by computing all distances 

from one scanned point to the other scanned points (see Figure 4, 5, and 7). After finding the two 

nearest neighbor points of each scanned point, the list of all three-point sets can be generated. 

Then the normal vector ),,( zyx NNN
rrr

for each set of three-point sets can be computed. Using these 

normals, the scanned points can be segmented by each cuboid surface (see Figure 8). 
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Figure 4: K-nearest Neighbors Figure 5: K-nearest Neighbors Tree 

 
 

2) Plane optimization using the least squares method used to fit surfaces of the cuboid (see 

Figure 9).  Using a linear equation, find the predicted Z, or .  The error term is 

defined as  Given a set of data points (x
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n=Q-1d          (3) 

 

3) Intersecting edge line found between two surfaces and the vertices (see Figure 10 

below).  The line of intersection of two planes can be found by solving the two linear equations 

representing the planes. After applying these equations to three surfaces of the cuboid, we can 

find three intersection edges. Therefore, a vertex of a cuboid can be obtained from those three 

edges.  

 

4) Point projections were used to compute parameters (see Figure 11).  It is assumed that 

two points, (x1, y1, z1), (x2, y2, z2), are selected from the optimized plane. The size of the cuboid 

can be determined by computing the distance from each edge to the farthest point on a certain 

surface. The distance d from point K to a line defined by the end point P1 and the direction V can 

be found by calculating the magnitude of the component of K-P1 that is perpendicular to the line. 

The squared distance between the point K and the line can be found by subtracting the square of 

the projection of K-P1 in the direction V from the square of K-P1.  This provides us below 

equations:    

2
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Figure 9: Computed Edges 
Figure 6:Scanned Points 

 
 

 
 Figure 10: Fitted and Matched Cuboid 

Figure 7: Points Projected on Optimized Surfaces 
 

 

 
 Figure 11: Actual Object 

Figure 8: Segmented Points  
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A second method is developed based on the previously explained cuboid fitting and 

matching method but applies when only two surfaces are visible. The process includes: 

1. Data acquisition from the laser range finder 

2. Segmentation of the scanned points into two surfaces of the cuboid using the k-nearest 

neighbors method 

3. Edge detection 

4. Point projection and computation of parameters of the cuboid 

 

When only two surfaces are visible, the third surface must be automatically generated 

using the surface locations and axis normals of the two original ones. Figure 12, 13, 14, and 15 

show the results of this method for an example. 

 

 
Figure 12: Result of Point Segmentation 

 
Figure 13: Representing Points of Two Surfaces 
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Figure 14: Clusters of Normals Figure 15: Fitted Model 

 

Cylinders: 

This section describes the fitting and matching method for cylinders.  Four parameters 

define a bounded cylinder: an axis vector b; a center point cr = (Xc, Yc, Zc); a scalar radius r; and a 

length.  These parameters must be calculated from a set of scanned points d = {(Xi, Yi, Zi)} that 

define the boundary of the cylinder. The Figure 16 shows the process for fitting and matching 

cylinders that is presented more in details below. 
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Figure 16: Process for Fitting and Matching Cylinders 

 

Duda’s Principal Components Analysis (PCA) was used to determine the primary axis of 

a cylinder [7]. PCA is a distribution-based ordination method in which the distances between 

sites in an ordination diagram are correlated with multi-dimensional distribution. PCA assumes 

that all vectors in a set of n dimensional samples a1 … an  can be explained by a single vector a0. 

The vector a0 is derived using the least squares method, in which the sum of the squared distances 

between a0 and the various ak are minimized. We define the square-error criterion function F0(a0) 

by: 
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Projecting the sample data onto a line through the sample mean, one-dimensional 

representation can be computed. If we let e be a unit vector of the line direction, the line equation 

is  

depa +=          (8) 

Scalar d is the distance between the sample data and the sample mean p. We can find the 

coefficients dk by minimizing the squared criterion function. 
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The best direction e of the line can be found by solving scatter matrix U, which is defined 

by 
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LaGrange multipliers can be used to maximize the etUe, which is subject to the constraint 

||e||=1. Let φ be an undetermined multiplier.  We can do the differentiation of  with regard to e, 

getting: 

v

)1( −−= eeUeev tt φ         (13) 
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By setting the gradient vector equal to zero, we see that e should be an eigenvector of the 

scatter matrix (see Figure 17 for an application example). The eigenvector will be the primary 

axis of the hyper-ellipsoid that can be obtained by reducing the dimensionality of the feature 

space and by restricting attention to the directions along the scatter of the cloud [23, 27, 28]. 

eUe φ=          (15) 

 

After finding the primary axis of a cylinder, estimated planar surfaces can be generated on 

the top and bottom of a cylinder. As can be seen in Figure 18 and Figure 19 for an example, by 

projecting the points of the curved surface onto the estimated planar surfaces, the radius and 

center point of the cylinder can be estimated.  The process for computing optimized radius 

applies the curve fitting method to identify an optimized circle using measured points. 

1. Move the axes to the intersection between the primary axis of the cylinder and planar 

surface of the cylinder using the transformation matrix.  

2. Rotate the transformed axes to match with the primary the axis of the cylinder. 

3. Project all the points on the curved surface into the planar surface. 

4. Find the optimized center point of the cylinder to fit the cylinder 

The Gander, Golub, and Steebel algorithm for computing optimized circle in three-

dimensional space was used for this method as a fast method of circle fitting [10]. The center 

point and radius of a cylinder can be derived using the following formula 

0)( =++= mxlxkxxF TT        (16) 

The coefficients k, l, and m are computed from a linear system of equations Cv=0 for the 

coefficients v = (k, l1, l2, m)T, such that 
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In general, when the system of nonlinear equations is greater than 3, the solution to the 

system is over-determined. In order to solve the over-determined system, Bv=0 where v is chosen 

to minimize .r  

 min=Bv          (18) 

The center point and the radius are obtained w=(w1, w2). This has the limitation of not 

providing the best fit in a geometric sense, but is a useful starting point for minimizing the 

geometric distance.In order to find the least squares solution for a nonlinear equation it is 

necessary to minimize the distance 22
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∑
=

=
1

1

2 min)(
n

i
i vd         (19) 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−+−

−

−+−

−

−
−+−

−

−+−

−

=

1
)()()()(

1
)()()()(

)(

2
22

2
11

21
2

22
2

11

11

2
122

2
111

122
2

122
2

111

111

nn

n

nn

n

xvxv
xv

xvxv
xv

xvxv
xv

xvxv
xv

vI MMM   (20) 

The set of points obtained while minimizing the algebraic distance can be iteratively 

substituted into I (v). It obtains the best fit circle with center w and radius r (see Figure 20 for an 

application example). 

Figure 17, 18, 19, 20, 21, and 22 display an example of cylinder fitting and matching. 
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Figure 17: Scanned Points Figure 20: Projected Points before Circle Fit 

  
Figure 18: Circle Fitting Result Figure 21: Result of Fitting and Matching 

 

 

  
Figure 19: Fitted and Matched Model Figure 22: Pipe to be modeled 
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Experimental Results of Primitive Fitting and Matching  

Experiments were performed to determine how accurately and rapidly the fitting and 

matching algorithms could build workspace models. An experimental test bed was set up of 

objects (cuboids and cylinders) with various dimensions.  The number of points measured for 

each object was another parameter that has been varied during the experiments. 

The key results are: 

• For cylinders, the ratio 
Diameter

Length  strongly affects the accuracy of the modeling 

process: the higher, the more accurate. 

• The bigger the cylinder, the more points are necessary to accurately model it (from 20 

to 40 points). 

• Cylinders can be modeled with a 1% to 5% precision error. 

• A minimum of 30 points is needed to get accuracy of location, orientation, and sizes of 

cuboids. 

• Cuboids can be modeled with a 1 to 2% precision error. 

• Processing time is about a second, and data acquisition time depends on the 

ergonomics of the hardware. 

Primitives Merging and Compliance  Checking 

Target objects often require not to be modeled with one but with many primitives.  This is 

due to the fact that, by only modeling the primitives, they association is lost. Simple set 

membership for group transformations would be acceptable for many applications, however 

merging primitives can (1) improve visualization, (2) help reduce overall modeling errors, and (3) 

allow useful information to be associated with the primitives, or merged primitives.  IN fact, 
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merging and compliance checking can be seen as graphic analogy to the spell check and grammar 

check functionalities in MS Word TM 

For example, the dimensions of the primitives obtained with the previously described 

algorithms may be corrected by comparing contiguous elements of an object because they 

probably share some of these dimensions.  For instance, the two diameters of scanned pipes 

known to be contiguous in a pipe spool can be equalized.  The new value may be calculated as 

the closest standard value allowed for pipes.  Not only the primitives’ dimensions, but their 

orientation may be corrected using relationship information, in a form of compliance checking. 

Merging may mean two things.  First, merging may mean “grouping the primitives 

belonging to a same object”.  This can be very useful while considering the readability/clarity of 

screen-displayed modeled environment.  Indeed, if it is known that the scanned primitives belong 

to two different objects, two different colors can be chosen to distinguish them.  In the below, the 

comparison between the steps 1 and 2 shows how the relationship information can definitely help 

the user understanding a model, especially in the case of complex scenes.  

Secondly, merging may mean “grouping and changing the primitives’ dimensions ot other 

properties to better model an object”.  More interesting than choosing a color per object, it would 

be useful to connect the primitives graphically in order to obtain clearer and more accurate as-

built models.  Using merging process, step 3 in better illustrates that the scanned scene in step 2 is 

a structure, a pipe spool, a tank, and a chimney. 
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Step 1: No Object Recognition Process Step 2: Only Object Distinction Process 

  

  
Step 3: Object Distinction and Picture of the Scanned Scene 

Object Reconstitution Processes 
 

Figure 23: How merging primitives can improve model display 

 

Research is currently underway and algorithms have been or are still being developed for 

developing merging capabilities.  These algorithms are reported in Bosche et al. [1]. 

Conclusions & Recommendations 

A rapid 3D modeling approach that combines human recognition and a simple laser range 

finder has been developed. The short modeling times possible (minutes per scene) and the 

relatively small errors obtained in the modeling of primitives (usually no more than 5 percent for 

cylinders and cuboids) show that this method can be used to model construction-site objects at a 
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sufficiently rapid rate and with reasonable accuracy. This method is computationally efficient and 

suitable for use in applications such as safety enhancement in equipment control. It is also 

acceptable for generating construction as-builts.   

This new approach to graphical workspace modeling is still in the outdoor testing stage. 

The merging algorithms and a graphical user interface are still being developed.  Consequently, 

even if the principle of using “rapid 3D human-assisted modeling using sparse range points” is 

validated, further effort is needed to yield a product that could effectively be used on construction 

sites. Nonetheless, this method shows promise as a means of rendering accurate graphical models 

in short order. 
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