55 research outputs found

    Geometric Phases and Robotic Locomotion

    Get PDF
    Robotic locomotion is based in a variety of instances upon cyclic changes in the shape of a robot mechanism. Certain variations in shape exploit the constrained nature of a robot's interaction with its environment to generate net motion. This is true for legged robots, snakelike robots, and wheeled mobile robots undertaking maneuvers such as parallel parking. In this paper we explore the use of tools from differential geometry to model and analyze this class of locomotion mechanisms in a unified way. In particular, we describe locomotion in terms of the geometric phase associated with a connection on a principal bundle, and address issues such as controllability and choice of gait. We also provide an introduction to the basic mathematical concepts which we require and apply the theory to numerous example systems

    A Discrete Geometric Optimal Control Framework for Systems with Symmetries

    Get PDF
    This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’Alembert- Pontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue

    Experiments in carangiform robotic fish locomotion

    Get PDF
    This paper studies a form of robotic fish movement that is analogous to the carangiform style of swimming seen in nature. We propose a simple quasi-steady fluid flow model for predicting the thrust generated by the flapping tail. We then describe an experimental system, consisting of a three-link robot, that has been constructed in order to study carangiform-like swimming. Experimental results obtained with this system suggest that the simplified propulsion model is reasonably accurate. The input parameters that realize optimum thrust are experimentally determined. Finally, we consider some issues in maneuvering

    Symmetry Reduction of Optimal Control Systems and Principal Connections

    Full text link
    This paper explores the role of symmetries and reduction in nonlinear control and optimal control systems. The focus of the paper is to give a geometric framework of symmetry reduction of optimal control systems as well as to show how to obtain explicit expressions of the reduced system by exploiting the geometry. In particular, we show how to obtain a principal connection to be used in the reduction for various choices of symmetry groups, as opposed to assuming such a principal connection is given or choosing a particular symmetry group to simplify the setting. Our result synthesizes some previous works on symmetry reduction of nonlinear control and optimal control systems. Affine and kinematic optimal control systems are of particular interest: We explicitly work out the details for such systems and also show a few examples of symmetry reduction of kinematic optimal control problems.Comment: 23 pages, 2 figure
    corecore