3 research outputs found

    Room geometry inference using sources and receivers on a uniform linear array

    Get PDF
    State-of-the-art room geometry inference algorithms estimate the shape of a room by analyzing peaks in room impulse responses. These algorithms typically require the position of the source wrt the receiver array; this position is often estimated with sound source localization, which is susceptible to high errors under common sampling frequencies. This paper proposes a new approach, namely using an array with a known geometry and consisting of both sources and receivers. When these transducers constitute a uniform linear array, new challenges and opportunities arise for performing room geometry inference. We propose solutions designed to address these challenges, but also designed to leverage the opportunities for better results

    Inferring Room Geometries

    No full text
    Determining the geometry of an acoustic enclosure using microphone arrays has become an active area of research. Knowledge gained about the acoustic environment, such as the location of reflectors, can be advantageous for applications such as sound source localization, dereverberation and adaptive echo cancellation by assisting in tracking environment changes and helping the initialization of such algorithms. A methodology to blindly infer the geometry of an acoustic enclosure by estimating the location of reflective surfaces based on acoustic measurements using an arbitrary array geometry is developed and analyzed. The starting point of this work considers a geometric constraint, valid both in two and three-dimensions, that converts time-of-arrival and time-difference-pf-arrival information into elliptical constraints about the location of reflectors. Multiple constraints are combined to yield the line or plane parameters of the reflectors by minimizing a specific cost function in the least-squares sense. An iterative constrained least-squares estimator, along with a closed-form estimator, that performs optimally in a noise-free scenario, solve the associated common tangent estimation problem that arises from the geometric constraint. Additionally, a Hough transform based data fusion and estimation technique, that considers acquisitions from multiple source positions, refines the reflector localization even in adverse conditions. An extension to the geometric inference framework, that includes the estimation of the actual speed of sound to improve the accuracy under temperature variations, is presented that also reduces the required prior information needed such that only relative microphone positions in the array are required for the localization of acoustic reflectors. Simulated and real-world experiments demonstrate the feasibility of the proposed method.Open Acces

    Audio for Virtual, Augmented and Mixed Realities: Proceedings of ICSA 2019 ; 5th International Conference on Spatial Audio ; September 26th to 28th, 2019, Ilmenau, Germany

    Get PDF
    The ICSA 2019 focuses on a multidisciplinary bringing together of developers, scientists, users, and content creators of and for spatial audio systems and services. A special focus is on audio for so-called virtual, augmented, and mixed realities. The fields of ICSA 2019 are: - Development and scientific investigation of technical systems and services for spatial audio recording, processing and reproduction / - Creation of content for reproduction via spatial audio systems and services / - Use and application of spatial audio systems and content presentation services / - Media impact of content and spatial audio systems and services from the point of view of media science. The ICSA 2019 is organized by VDT and TU Ilmenau with support of Fraunhofer Institute for Digital Media Technology IDMT
    corecore