41,164 research outputs found

    Geometric Exponents, SLE and Logarithmic Minimal Models

    Full text link
    In statistical mechanics, observables are usually related to local degrees of freedom such as the Q < 4 distinct states of the Q-state Potts models or the heights of the restricted solid-on-solid models. In the continuum scaling limit, these models are described by rational conformal field theories, namely the minimal models M(p,p') for suitable p, p'. More generally, as in stochastic Loewner evolution (SLE_kappa), one can consider observables related to nonlocal degrees of freedom such as paths or boundaries of clusters. This leads to fractal dimensions or geometric exponents related to values of conformal dimensions not found among the finite sets of values allowed by the rational minimal models. Working in the context of a loop gas with loop fugacity beta = -2 cos(4 pi/kappa), we use Monte Carlo simulations to measure the fractal dimensions of various geometric objects such as paths and the generalizations of cluster mass, cluster hull, external perimeter and red bonds. Specializing to the case where the SLE parameter kappa = 4p'/p is rational with p < p', we argue that the geometric exponents are related to conformal dimensions found in the infinitely extended Kac tables of the logarithmic minimal models LM(p,p'). These theories describe lattice systems with nonlocal degrees of freedom. We present results for critical dense polymers LM(1,2), critical percolation LM(2,3), the logarithmic Ising model LM(3,4), the logarithmic tricritical Ising model LM(4,5) as well as LM(3,5). Our results are compared with rigourous results from SLE_kappa, with predictions from theoretical physics and with other numerical experiments. Throughout, we emphasize the relationships between SLE_kappa, geometric exponents and the conformal dimensions of the underlying CFTs.Comment: Added reference

    Introducing Quantum Ricci Curvature

    Get PDF
    Motivated by the search for geometric observables in nonperturbative quantum gravity, we define a notion of coarse-grained Ricci curvature. It is based on a particular way of extracting the local Ricci curvature of a smooth Riemannian manifold by comparing the distance between pairs of spheres with that of their centres. The quantum Ricci curvature is designed for use on non-smooth and discrete metric spaces, and to satisfy the key criteria of scalability and computability. We test the prescription on a variety of regular and random piecewise flat spaces, mostly in two dimensions. This enables us to quantify its behaviour for short lattices distances and compare its large-scale behaviour with that of constantly curved model spaces. On the triangulated spaces considered, the quantum Ricci curvature has good averaging properties and reproduces classical characteristics on scales large compared to the discretization scale.Comment: 43 pages, 27 figure

    Fast and numerically stable circle fit

    Full text link
    We develop a new algorithm for fitting circles that does not have drawbacks commonly found in existing circle fits. Our fit achieves ultimate accuracy (to machine precision), avoids divergence, and is numerically stable even when fitting circles get arbitrary large. Lastly, our algorithm takes less than 10 iterations to converge, on average.Comment: 16 page
    • …
    corecore