37,332 research outputs found

    High-SNR Capacity of Wireless Communication Channels in the Noncoherent Setting: A Primer

    Get PDF
    This paper, mostly tutorial in nature, deals with the problem of characterizing the capacity of fading channels in the high signal-to-noise ratio (SNR) regime. We focus on the practically relevant noncoherent setting, where neither transmitter nor receiver know the channel realizations, but both are aware of the channel law. We present, in an intuitive and accessible form, two tools, first proposed by Lapidoth & Moser (2003), of fundamental importance to high-SNR capacity analysis: the duality approach and the escape-to-infinity property of capacity-achieving distributions. Furthermore, we apply these tools to refine some of the results that appeared previously in the literature and to simplify the corresponding proofs.Comment: To appear in Int. J. Electron. Commun. (AE\"U), Aug. 201

    Optimal Auctions vs. Anonymous Pricing: Beyond Linear Utility

    Full text link
    The revenue optimal mechanism for selling a single item to agents with independent but non-identically distributed values is complex for agents with linear utility (Myerson,1981) and has no closed-form characterization for agents with non-linear utility (cf. Alaei et al., 2012). Nonetheless, for linear utility agents satisfying a natural regularity property, Alaei et al. (2018) showed that simply posting an anonymous price is an e-approximation. We give a parameterization of the regularity property that extends to agents with non-linear utility and show that the approximation bound of anonymous pricing for regular agents approximately extends to agents that satisfy this approximate regularity property. We apply this approximation framework to prove that anonymous pricing is a constant approximation to the revenue optimal single-item auction for agents with public-budget utility, private-budget utility, and (a special case of) risk-averse utility.Comment: Appeared at EC 201

    Product Multicommodity Flow in Wireless Networks

    Get PDF
    We provide a tight approximate characterization of the nn-dimensional product multicommodity flow (PMF) region for a wireless network of nn nodes. Separate characterizations in terms of the spectral properties of appropriate network graphs are obtained in both an information theoretic sense and for a combinatorial interference model (e.g., Protocol model). These provide an inner approximation to the n2n^2 dimensional capacity region. These results answer the following questions which arise naturally from previous work: (a) What is the significance of 1/n1/\sqrt{n} in the scaling laws for the Protocol interference model obtained by Gupta and Kumar (2000)? (b) Can we obtain a tight approximation to the "maximum supportable flow" for node distributions more general than the geometric random distribution, traffic models other than randomly chosen source-destination pairs, and under very general assumptions on the channel fading model? We first establish that the random source-destination model is essentially a one-dimensional approximation to the capacity region, and a special case of product multi-commodity flow. Building on previous results, for a combinatorial interference model given by a network and a conflict graph, we relate the product multicommodity flow to the spectral properties of the underlying graphs resulting in computational upper and lower bounds. For the more interesting random fading model with additive white Gaussian noise (AWGN), we show that the scaling laws for PMF can again be tightly characterized by the spectral properties of appropriately defined graphs. As an implication, we obtain computationally efficient upper and lower bounds on the PMF for any wireless network with a guaranteed approximation factor.Comment: Revised version of "Capacity-Delay Scaling in Arbitrary Wireless Networks" submitted to the IEEE Transactions on Information Theory. Part of this work appeared in the Allerton Conference on Communication, Control, and Computing, Monticello, IL, 2005, and the Internation Symposium on Information Theory (ISIT), 200

    Second-order coding rates for pure-loss bosonic channels

    Get PDF
    A pure-loss bosonic channel is a simple model for communication over free-space or fiber-optic links. More generally, phase-insensitive bosonic channels model other kinds of noise, such as thermalizing or amplifying processes. Recent work has established the classical capacity of all of these channels, and furthermore, it is now known that a strong converse theorem holds for the classical capacity of these channels under a particular photon number constraint. The goal of the present paper is to initiate the study of second-order coding rates for these channels, by beginning with the simplest one, the pure-loss bosonic channel. In a second-order analysis of communication, one fixes the tolerable error probability and seeks to understand the back-off from capacity for a sufficiently large yet finite number of channel uses. We find a lower bound on the maximum achievable code size for the pure-loss bosonic channel, in terms of the known expression for its capacity and a quantity called channel dispersion. We accomplish this by proving a general "one-shot" coding theorem for channels with classical inputs and pure-state quantum outputs which reside in a separable Hilbert space. The theorem leads to an optimal second-order characterization when the channel output is finite-dimensional, and it remains an open question to determine whether the characterization is optimal for the pure-loss bosonic channel.Comment: 18 pages, 3 figures; v3: final version accepted for publication in Quantum Information Processin
    • …
    corecore