1,498 research outputs found

    Improving compressed sensing with the diamond norm

    Full text link
    In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this work, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that -for a class of matrices saturating a certain norm inequality- the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this work touches on an aspect of the notoriously difficult tensor completion problem.Comment: 25 pages + Appendix, 7 Figures, published versio

    On the reconstruction of planar lattice-convex sets from the covariogram

    Full text link
    A finite subset KK of Zd\mathbb{Z}^d is said to be lattice-convex if KK is the intersection of Zd\mathbb{Z}^d with a convex set. The covariogram gKg_K of KZdK\subseteq \mathbb{Z}^d is the function associating to each u \in \integer^d the cardinality of K(K+u)K\cap (K+u). Daurat, G\'erard, and Nivat and independently Gardner, Gronchi, and Zong raised the problem on the reconstruction of lattice-convex sets KK from gKg_K. We provide a partial positive answer to this problem by showing that for d=2d=2 and under mild extra assumptions, gKg_K determines KK up to translations and reflections. As a complement to the theorem on reconstruction we also extend the known counterexamples (i.e., planar lattice-convex sets which are not reconstructible, up to translations and reflections) to an infinite family of counterexamples.Comment: accepted in Discrete and Computational Geometr

    Characterizing the dual mixed volume via additive functionals

    Full text link
    Integral representations are obtained of positive additive functionals on finite products of the space of continuous functions (or of bounded Borel functions) on a compact Hausdorff space. These are shown to yield characterizations of the dual mixed volume, the fundamental concept in the dual Brunn-Minkowski theory. The characterizations are shown to be best possible in the sense that none of the assumptions can be omitted. The results obtained are in the spirit of a similar characterization of the mixed volume in the classical Brunn-Minkowski theory, obtained recently by Milman and Schneider, but the methods employed are completely different

    A reflection approach to the broken ray transform

    Full text link
    We reduce the broken ray transform on some Riemannian manifolds (with corners) to the geodesic ray transform on another manifold, which is obtained from the original one by reflection. We give examples of this idea and present injectivity results for the broken ray transform using corresponding earlier results for the geodesic ray transform. Examples of manifolds where the broken ray transform is injective include Euclidean cones and parts of the spheres SnS^n. In addition, we introduce the periodic broken ray transform and use the reflection argument to produce examples of manifolds where it is injective. We also give counterexamples to both periodic and nonperiodic cases. The broken ray transform arises in Calder\'on's problem with partial data, and we give implications of our results for this application.Comment: 29 pages, 6 figures; final versio

    Euler-Bessel and Euler-Fourier Transforms

    Full text link
    We consider a topological integral transform of Bessel (concentric isospectral sets) type and Fourier (hyperplane isospectral sets) type, using the Euler characteristic as a measure. These transforms convert constructible \zed-valued functions to continuous \real-valued functions over a vector space. Core contributions include: the definition of the topological Bessel transform; a relationship in terms of the logarithmic blowup of the topological Fourier transform; and a novel Morse index formula for the transforms. We then apply the theory to problems of target reconstruction from enumerative sensor data, including localization and shape discrimination. This last application utilizes an extension of spatially variant apodization (SVA) to mitigate sidelobe phenomena

    The inverse moment problem for convex polytopes

    Full text link
    The goal of this paper is to present a general and novel approach for the reconstruction of any convex d-dimensional polytope P, from knowledge of its moments. In particular, we show that the vertices of an N-vertex polytope in R^d can be reconstructed from the knowledge of O(DN) axial moments (w.r.t. to an unknown polynomial measure od degree D) in d+1 distinct generic directions. Our approach is based on the collection of moment formulas due to Brion, Lawrence, Khovanskii-Pukhikov, and Barvinok that arise in the discrete geometry of polytopes, and what variously known as Prony's method, or Vandermonde factorization of finite rank Hankel matrices.Comment: LaTeX2e, 24 pages including 1 appendi
    corecore